跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳冠樺
Kuan-hua Chen
論文名稱: 具高敏感度及高訊雜比之非接觸式電容性生醫感測器研製
Design of Non-Contact Capacitive Bio-Sensor with High Sensitive and High SNR
指導教授: 徐國鎧
Kuo-kai Shyu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 78
中文關鍵詞: 電容性感測高輸入阻抗非接觸電極心電訊號
外文關鍵詞: ECG, non-contact electrode, Capacitive sensor, high-input impedance
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文設計一新式的非接觸生醫感測器,在使用時可以提高量測時的方便性、安全性,不需與皮膚直接接觸,並且能做長時間量測生理訊號。設計依據是依電容性耦合訊號的原理來製作一個非接觸生醫感測器;但生理訊號通常都相當微弱,為了使訊號不受到衰減且能清楚的辨識,而此感測器具有下列優點:
    (1) 能濾除直流偏壓且不影響輸入端的阻抗。
    (2) 感測器具有高敏感度。
    (3) 感測器具有高訊雜比。
    (4) 外部屏蔽層,增加抗雜訊的強度。
      最後本文將實現所提出之非接觸生理訊號量測系統,並利用本文所設計的新式生理訊號感測器進行實際心電訊號量測,來驗證其正確性,實驗結果證實本論文提出之方法與可行性。


    The purpose of this paper is to design a novel capacitive coupling sensor which provides a convenient, secure, and noncontact measurement for human bio-signal. It is useful for the long-term bio-signal measurement. The method is based on the principle of capacitive coupling to sense bio-signals. However, bio-signals are usually extremely weak. It becomes more difficult to measure bio-signals when using noncontact method. Therefore, this research addresses a new noncontact biomedical sensor having the following four advantages:
    (1) Eliminating DC-bias without affecting the input impedance
    (2) High sensitivity
    (3) High signal-to-noise ratio (SNR)
    (4) Reducing interference by making an external shielding
    Finally, a non-contact electrocardiogram (ECG) measurement system is designed to verify the feasibility of the proposed capacitive coupling sensor. The presented sensor can be extended to other physiological signal measurement systems.

    摘要----------------------------------------------I ABSTRACT------------------------------------------II 誌謝----------------------------------------------III 目錄----------------------------------------------IV 圖目錄--------------------------------------------VII 表目錄--------------------------------------------X 第一章 緒論---------------------------------------1 1.1 研究動機與目標--------------------------------1 1.2 文獻回顧--------------------------------------2 1.3 論文大綱--------------------------------------4 第二章 研究背景與原理-----------------------------5 2.1 心電圖概論------------------------------------5 2.2 電容性耦合感測原理----------------------------8 2.3 硬體系統原理----------------------------------10 2.3.1 儀表放大器----------------------------------10 2.3.2 低通濾波器----------------------------------11 2.3.3 高通濾波器----------------------------------13 2.3.4 多重反饋式帶通濾波器------------------------15 2.4 雜訊干擾與處理--------------------------------17 第三章 新式感測器之電路設計-----------------------19 3.1 傳統式電容性耦合感測器簡介--------------------19 3.2 新式感測器電路架構----------------------------23 3.2.1 感測器之高敏感度----------------------------24 3.2.2 感測器之新式等電位屏蔽設計------------------25 第四章 量測電路設計與實現-------------------------26 4.1 量測系統電路架構------------------------------26 4.2類比訊號處理系統架構---------------------------27 4.2.1交流耦合網路---------------------------------27 4.2.2 前級差動放大器------------------------------31 4.2.3 四階帶通濾波器------------------------------34 4.2.4陷波濾波器-----------------------------------35 4.2.5 後級放大與箝位電路--------------------------37 4.2.6 電感電容式陷波濾波器------------------------38 4.3 數位訊號處理系統架構--------------------------42 4.3.1 系統架構與FPGA簡介--------------------------42 4.3.2 IIR低通數位濾波器設計---------------------44 第五章 實現與驗證---------------------------------46 5.1 硬體電路實現----------------------------------46 5.1.1 具高敏感度及訊雜比的電容性感測器之實體電路--46 5.1.2 心電訊號量測之實體電路與波形驗證------------52 5.2 傳統式與新式電容性生醫感測器比較分析----------59 5.2.1 傳統式與新式電容性生醫感測器敏感度分析------59 5.2.2 傳統式與新式電容性生醫感測器訊雜比分析------60 5.2.3 使用不同型式感測器的全系統動態響應分析------63 5.3 實際生理訊號量測結果--------------------------66 5.3.1 實際量測心電訊號實驗方法與結果圖------------66 5.3.2 實際量測肌電訊號結果圖----------------------71 第六章 結論與未來展望-----------------------------72 6.1 結論------------------------------------------72 6.2 未來展望--------------------------------------73 參考文獻------------------------------------------74 作者簡歷------------------------------------------78

    [1] S. Nishimura, Y. Tomita, and T. Horiuchi, “Clinical Application of an Active Electrode Using an Operational Amplifier,” IEEE Trans. Biomed. Eng., Vol. 39, No. 10, pp. 1096-1099, Oct., 1992.
    [2] T. Degen, and H. Jäckel, “Pseudodifferential Amplifier for Bioelectric Events With DC-Offset Compensation Using Two-Wired Amplifying Electrodes,” IEEE Trans. Biomed. Eng., Vol. 53, No. 2, pp. 300-310, Feb., 2006.
    [3] T. Degen, S. Torrent, and H. Jäckel, “Low-Noise Two-Wired Buffer Electrodes for Bioelectric Amplifiers,” IEEE Trans. Biomed. Eng., Vol. 54, No. 7, pp.1328-1332, Jul., 2007.
    [4] W. H. Ko, M. R. Neuman, R. N. Wolfson, and E. T. Yon, “Insulated Active Electrodes,” IEEE Trans. Ind. Electron. Control. Instrum., Vol. 17, No. 2, pp.195-198, 1970.
    [5] A. Potter, and L. Menke, “Capacitive Type of Biomedical Electrode,” IEEE Trans. Biomed. Eng., Vol. 17, No.4, pp.350-351, Oct., 1970.
    [6] C. H. Lagow, K. J. Sladek, and P. C. Richardson, “Anodic Insulated Tantalum Oxide Electrocardiograph Electrodes,” IEEE Trans. Biomed. Eng., Vol. 18, No.2, pp.162-164, Mar., 1971.
    [7] T. Matsuo, K. Iinuma,and M. Esashi, “A Barium-Titanate-Ceramics Capacitive-Type EEG Electrode,” IEEE Trans. Biomed. Eng., Vol. 20, No.4, pp.299-300, Jul., 1973.
    [8] L. Gourmelon, and G. Langereis, “Contactless sensors for Surface Electromyography,” in Proc. 28th Ann. Intern. Conf. IEEE EMBS, pp.2514-2517, Aug., 2006.
    [9] A. Ueno, Y. Akabane, T. Kato, H. Hoshino, S. Kataoka, Y. Ishiyama, “Capacitive Sensing of Electrocardiographic Potential Through Cloth From the Dorsal Surface of the Body in a Supine Position: A Preliminary Study,” IEEE Trans. Biomed. Eng., Vol. 54, No.4, pp.759-766, Apr., 2007.
    [10] Y. Yama, A. Ueno, and Y. Uchikawa, “Development of a Wireless Capacitive Sensor for Ambulatory ECG Monitoring over Clothes,” in Proc. 29th Ann. Intern. Conf. IEEE EMBS, pp.5727-5730, Aug., 2007.
    [11] Y. G. Lim, K. K. Kim, and K. S. Park, “The ECG Measurement in the Bathtub Using the Insulated Electrodes,” in Proc. 26th Ann. Intern. Conf. IEEE EMBS, pp.2383-2385, Sep., 2004.
    [12] Y. G. Lim, K. K. Kim, and K. S. Park, “ECG Measurement on a Chair Without Conductive Contact,” IEEE Trans. Biomed. Eng., Vol. 53, No.5, pp.956-959, May., 2006.
    [13] Y. G. Lim, K. K. Kim, and K. S. Park, “ECG Recording on a Bed During Sleep Without Direct Skin-Contact,” IEEE Trans. Biomed. Eng., Vol. 54, No.4, pp.718-725, Apr., 2007.
    [14] H. J. Baek, J. S. Kim, K. K. Kim, and K. S. Park, “System for Unconstrained ECG Measurement on a Toilet Seat using Capacitive Coupled Electrodes : The Efficacy and Practicality,” in Proc. 30th Ann. Intern. Conf. IEEE EMBS, pp.2326-2328, Aug., 2008.
    [15] S. Ishida, N. Shiozawa, Y. Fujiwara, and M. Makikawa, “Electrocardiogram Measurement during Sleep with Wearing Clothes Using Capacitively-Coupled Electrodes,” in Proc. 29th Ann. Intern. Conf. IEEE EMBS, pp.2647-2650, Aug., 2007.
    [16] T. H. Kang, C. R. Merritt, E. Grant, B. Pourdeyhimi, and H. T. Nagle, “Nonwoven Fabric Active Electrodes for Biopotential Measurement During Normal Daily Activity,” IEEE Trans. Biomed. Eng., Vol. 55, No.1, pp.188-195, Jan., 2008.
    [17] C. R. Merritt, H. T. Nagle, and E. Grant, “Fabric-Based Active Electrode Design and Fabrication for Health Monitoring Clothing,” IEEE Trans. Biomed. Eng., Vol. 13, No.2, pp.274-280, Mar., 2009.
    [18] D. Higashi, T. Imai, A. Ueno, and O. Miyashita, “A Wearable Capacitive Heart-Rate Monitor for Controlling Electrically Assisted Bicycle,” in Proc. Ann. Intern. Conf. IEEE ICEMS, pp.1-6, 2009. 
    [19] 黃建銘, “以數位訊號處理器實現經驗模態分解法用於心電訊號處理”,國立中央大學電機工程學系,碩士論文,民國九十七年七月。
    [20] S. I. Fox, “Human phystology,” McGraw-Hill Inc., 1996.
    [21] J. W. Clark, “The origin of biopotentials,” in Medical Instrumentation Application and Design, 1998, Third Edition, J. G. Webster ED., Houghton Mifflin.
    [22] 盧明智,黃敏祥, “OP Amp 應用+實驗模擬” ,全華科技圖書股份有限公司,243-279、451-544頁,民國八十四年十二月。
    [23] 關尚勇,林吉合, “破解腦電波” ,藝軒圖書出版社,24-36、74-128頁,民國九十一年。
    [24] 張晉嘉, “生醫電訊號量測之市電干擾移除” ,國立台灣大學電機工程研究所碩士論文,民國九十年。

    [25] S. Leonhardt, and A. Aleksandrowicz, “Non-Contact ECG Monitoring for Automotive Application,” in Proc. 5th Intern. Conf. IEEE ISSMDBS, pp.183-185, Jun., 2008.
    [26] E. M. Spinelli, P. Areny, and M. A. Mayosky, “AC-Coupled Front-End for Biopotential Measurements,” IEEE Trans. Biomed. Eng., Vol. 50, No.3, pp.391-395, Mar., 2003.
    [27] 賴仁傑, “具增益自動調整之穩態視覺誘發電位量測電路研製” ,國立中央大學電機工程學系,碩士論文,民國九十八年六月。
    [28] 松井邦彥, “OP放大器應用技巧100例” ,科學出版社,12頁,西元2005年。
    [29] 林銘鴻, “FPGA 即時實現穩態視覺誘發腦電訊號處理之大腦人機介面” ,國立中央大學電機工程學系,碩士論文,民國九十八年六月。
    [30] 黃進強, “交流耦合平衡增益之腦波量測系統” ,國立中央大學電機工程學系,碩士論文,民國九十六年七月。
    [31] Burr-Brown Corporation, INA128 Datasheet, Oct. 1996.
    [32] Microchip Technology Inc., MCP3201 Datasheet, Jan. 2008
    [33] Microchip Technology Inc., MCP4921 Datasheet, Dec. 2006
    [34] Cyclone II Device Handbook, Altera, Inc., San Jose, CA, 2007

    QR CODE
    :::