跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳美瑜
Mei-Yu Chen
論文名稱: 福爾摩沙衛星七號觀察電離層赤道異常之磁偏角效應
Magnetic Declination Effects on Equatorial Ionization Anomaly Observed by FORMOSAT-7/COSMIC-2
指導教授: 劉正彥
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學與工程學系
Department of Space Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 50
中文關鍵詞: 電離層赤道異常福衛七號磁偏角
外文關鍵詞: COSMIC-2, magnetic declination, F7C2
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用福爾摩沙衛星七號(福衛七號)TGRS酬載所提供之掩星剖線資料,觀察正負15°磁緯度附近之日間電離層之電子濃度,以研究赤道異常峰強度(電子濃度)、位置、高度及出現時間對磁偏角之響應。本研究挑選三個磁經度區域,分別代表正磁偏角(-100°至-40°,稱為D+)、負磁偏角(5°至65°,稱為D-)及零磁偏角(165°至-135°,稱為D0)。相較之下,正磁偏角區,南北半球之赤道異常強度最大、出現時間最早、位置最北、時間差最大,且最大時間差發生在六月、最小時間差發生在十二月。而其在北半球高度最高,南半球高度則最低。負磁偏角區南北半球之赤道異常出現時間最晚、時間差最小、位置較南、高度差最小,且在南半球高度最高。零磁偏角區南北半球之赤道異常強度最小、位置最南、高度差最大。而其出現時間、時間差及高度皆介於其他兩區之間。結果證實磁偏角顯著影響電離層赤道異常之強度、位置、高度及出現時間。


    Characteristics of EIA (equatorial ionization anomaly) strength, location, appearance time, and altitude are investigated by means of the ionospheric electron density profiles obtained by TGRS (Tri-GNSS Radio occultation System) onboard FORMOSAT-7/COSMIC-2 (F7/C2). The characteristics over three geomagnetic longitudinal sectors with different magnetic declinations, "D+" the most positive-declination, -100°E to -40°E geomagnetic; "D-" the most negative-declination, 5°E to 65°E geomagnetic; "D0" around zero-declination, 165°E to -135°E geomagnetic, are examined. Results among the three sectors show that in D+, the northern and southern EIA crests yield the strongest strengths, appear at the earliest time, and move toward the most northern locations while the northern (southern) one reaches the highest (lowest) altitude. In D-, the two EIA crests yield the strengths and locations in-between those in D+ and D0, exhibit the latest appearance times while the southern one reaches the highest altitude. In D0, the EIA crests exhibit the weakest strengths, and move toward the most southern locations, appear at the time in-between the two other sectors, and have the largest altitude differences. The results show that declination is an important factor to the EIA crest characteristics.

    Table of Contents 摘要 i Abstract ii Table of Contents iii List of Figures iv List of Tables vii Chapter I Introduction 1 Chapter II Instrument and Method 7 2-1 Instruments 7 2-2 Data Analysis 10 Chapter III Observation Result 13 Chapter IV Discussion and Conclusion 21 Reference 28 Appendix 32

    Reference
    Balan, N., Bailey, G. J., Abdu, M. A., Oyama, K. I., Richards, P. G., MacDougall, J., and Batista, I. S. (1997). Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer. Journal of Geophysical Research, 102(A2), 2047–2056. https://doi.org/10.1029/95ja02639
    Balan, N., Rajesh, P. K., Sripathi, S., Tulasiram, S., Liu, J. Y., and Bailey, G. J. (2013). Modeling and observations of the north–south ionospheric asymmetry at low latitudes at long deep solar minimum. Advances in Space Research, 52, Issue 3, 375–382. https://doi.org/10.1016/j.asr.2013.04.003
    Cheng, C. Z. F., Kuo, Y. H., Anthes, R. A., and Wu, L. (2006). Satellite constellation monitors global and space weather. Eos Transactions American Geophysical Union, 87, 166. https://doi.org/10.1029/2006EO170003
    Chu, C. H., Huang, C. Y., Fong, C. J., Chen, S. Y., Chen, Y. H., Yeh, W. H., and Kuo, Y. H. Atmospheric remote sensing using global navigation satellite systems: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Terr. Atmos. Ocean. Sci. 2021, 32, 1001–1013.
    C/NOFS (Communication/Navigation Outage Forecast System). (2012, May 29). eoPortal. https://www.eoportal.org/satellite-missions/cnofs#cnofs-communicationnavigation-outage-forecast-system
    Duncan, R. A. (1960). The equatorial F region of the ionosphere. Journal of Atmospheric and Terrestrial Physics, 18, 89–100.
    FormoSat-7 / COSMIC-2 (Constellation Observing System for Meteorology, Ionosphere and Climate). (2013, April 29). eoPortal. https://www.eoportal.org/satellite-missions/stp2-formosat-7
    Hajj, G. A., and Romans, L. J. (1998). Ionospheric electron density profiles obtained with the global positioning system: Results from the GPS/MET experiment. Radio Science, 33, 175–190. https://doi.org/10.1029/97RS03183
    Hanson, W. B., and Moffett, R. J. (1966). Ionization transport effects in the equatorial F region. J. Geophys. Res., 71, 5559. https://doi.org/10.1029/JZ071i023p05559
    Huang, H., Lu, X., Liu, L., Wang, W., and Li, Q. (2018). Transition of interhemispheric asymmetry of equatorial ionization anomaly during solstices. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1029/2018JA026055
    Kelley, M. C., Wong, V. K., Aponte, N., Coker, C., Mannucci, A. J., and Komjathy, A. (2009). Comparison of COSMIC occultation‐based electron density profiles and TIP observations with Arecibo incoherent scatter radar data. Radio Science, 44, RS4011. https://doi.org/10.1029/2008RS004087
    Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R., and Hardy, K. R. (1997). Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System. Journal of Geophysical Research, 102(D19), 23, 429–23, 465. https://doi.org/10.1029/97JD01569
    Lin, C. H., Liu, J. Y., Fang, T. W., Chang, P. Y., Tsai, H. F., Chen, C. H., and Hsiao, C. C. (2007). Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC. Geophysical Research Letters, 34, L19101. https://doi.org/10.1029/2007GL030741
    Lin, C. H., Liu, J. Y., Hsiao, C. C., Liu, C. H., Cheng, C. Z., Chang, P. Y., Tsai, H. F., Fang, Z. W., Chen, C. H., and Hsu, M. L. (2009). Global ionospheric structure imaged by FORMOSAT‐3/COSMIC: Early results. Terrestrial, Atmospheric and Oceanic Sciences, 20(1), 171–179. https://doi.org/10.3319/TAO.2008.01.18.01(F3C)
    Lin, C. Y., Lin, C. C. H., Liu, J. Y., Rajesh, P. K., Matsuo, T., Chou, M. Y., Tsai, H. F., and Yeh, W. H. (2020). The early results and validation of FORMOSAT‐7/COSMIC‐2 space weather products: Global ionospheric specification and Ne‐aided Abel electron density profile. Journal of Geophysical Research: Space Physics, 125, e2020JA028028. https://doi.org/ 10.1029/2020JA028028
    Liu, J., Zhang, D., Mo, X., Xiong, C., Hao, Y., and Xiao, Z. (2020). Morphological differences of the northern equatorial ionization anomaly between the eastern Asian and American sectors. Journal of Geophysical Research: Space Physics, 125, e2019JA027506. https://doi.org/10.1029/2019JA027506
    Liu, J. Y., Lin, C. C. H., Lin, C. Y., Lee, I. T., Sun, Y. Y., Chen, S. P., Chang, F. Y., Rajesh, P. K., Hsu, C. T., Matsuo, T., Chen, C. H., and Tsai, H. F. (2022). Retrospect and prospect of ionospheric weather observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2. Terrestrial, Atmospheric and Oceanic Sciences, 33:20. https://doi.org/10.1007/s44195-022-00019-x
    Liu, J. Y., Lin, C. H., Rajesh, P. K., Lin, C. Y., Chang, F. Y., Lee, I. T., Fang, T. W., Fuller-Rowell, D., and Chen, S. P. (2022). Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations. Atmosphere, 13, 858. https://doi.org/10.3390/ atmos13060858
    Liu, J. Y., Wu, T. Y., Lin, C. Y., and Chang, L. C. (2022). The three-dimensional plasma structures and flows of the Earth’s upper atmosphere due to the Moon’s gravitational force. Scientific Reports, 12, 21003. https://doi.org/10.1038/s41598-022-25449-y
    Melbourne, W. G. (2005). Radio Occultations Using Earth Satellites: A Wave Theory Treatment. Wiley-Interscience.
    Ondoh, T., and Marubashi, K. (2001). Science of Space Environment. IOS Press.
    A Puzzling Collapse of Earth’s Upper Atmosphere | Science Mission Directorate. (2010, July 15). NASA SCIENCE. https://science.nasa.gov/science-news/science-at-nasa/2010/15jul_thermosphere/
    Schreiner, W., Rocken, C., Sokolovskiy, S., Syndergaard, S., and Hunt, D. (2007). Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT‐3 mission. Geophysical Research Letters, 34, L04808. https://doi.org/10.1029/2006GL027557
    Schreiner, W. S., Sokolovskiy, S. V., Rocken, C., and Hunt, D. C. (1999). Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Science, 34(4), 949–966. https://doi.org/10.1029/1999RS900034
    Stening, R. J. (1992). Modelling the low latitude f region. Journal of Atmospheric and Terrestrial Physics, 54(11-12), 1387–1412. https://doi.org/10.1016/0021-9169(92)90147-D
    Tsai, H. F., Liu, J. Y., Tsai, W. H., Liu, C. H., Tseng, C. L., and Wu, C. C. (2001). Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions, J. Geophys. Res., 106, A12.
    Zhang, R., Liu, L., Le, H., and Chen, Y. (2016). Evidence and effects of the sunrise enhancement of the equatorial vertical plasma drift in the F region ionosphere. Journal of Geophysical Research: Space Physics, 121, 4826–4834. https://doi.org/10.1002/2016JA022491
    Zhong, J., Lei, J., Wang, W., Burns, A. G., Yue, X., and Dou X. (2017). Longitudinal variations of topside ionospheric and plasmaspheric TEC, J. Geophys. Res. Space Physics, 122, 6737–6760. https://doi.org/10.1002/2017JA024191
    掩星觀測簡述。TACC。https://tacc.cwb.gov.tw/v2/ro_demo.html

    QR CODE
    :::