跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳政樺
Zheng-hua Wu
論文名稱: 一種具抵抗頻道阻塞能力的跳頻序列演算法
A jamming-resilient frequency hopping algorithm
指導教授: 張貴雲
Guey-yun Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 46
中文關鍵詞: 無線感測網路跳頻非同步對稱式
外文關鍵詞: wireless sensor network, channel-hopping, asynchronous, symmetric
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非協調式跳頻被認為是一項具抵抗阻塞能力的重要通訊技術。在非協調式調
    頻系統中,節點可不事先交換金鑰的情況下在多個頻道上進行跳頻。當節點在相
    同頻道上相遇時,他們就能夠與對方通訊。但是在已存在的系統中,他們都需要
    事先分配節點一個角色(傳送端/接收端)。這些方法只能使用在收送對的通訊上面
    (也就是當不保證每個收送對的的收者一定是扮演接收端的角色)。在本篇論文中,
    我們提出三個對稱式跳頻演算法(也就是不需要事先分配每個節點一個角色)。我
    們提出的方法可以保證節點在有限的時間內通訊且在非同步的環境下有高產
    量。


    Uncoordinated frequency hopping has been considered as an important
    technique for anti-jamming communications. In uncoordinated frequency
    hopping systems, nodes randomly switch over multiple frequencies without
    pre-shared keys. Upon rendezvous on the same frequency, they can communicate
    with each other. Existing schemes, however, require role (sender/
    receiver) pre-assignment before frequency hopping. Such approaches only
    support the communication between sender-receiver pairs (i.e., the communication
    between a node pair whose receiver play a sender role is not guaranteed).
    In this paper, we propose three symmetric frequency hopping algorithms
    (i.e., no role pre-assignment requirement). Our proposed algorithms
    have bounded maximal time to rendezvous and high throughputs under asynchronous
    scenarios.

    中文摘要i Abstract ii Contents iii List of Figures iv List of Tables vii 1 Introduction 1 2 Model and Problem Description 4 2.1 Jammer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 A Symmetric-Asynchronous Frequency Hopping against Jammer Algorithm 9 3.1 SAF scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 SAF-1 scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 SAF-2 scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Performance Evaluation 14 4.1 ENTROPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.1 ENTROPY OF SAF . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.2 ENTROPY OF SAF-1 . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.3 ENTROPY OF SAF-2 . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 The MTTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.1 The MTTR of SAF . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.2 The MTTR of SAF-1 . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.3 The MTTR of SAF-2 . . . . . . . . . . . . . . . . . . . . . . . . 18 5 Simulation 20 5.1 ATTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.1 Impact of the number of jammer . . . . . . . . . . . . . . . . . . 21 5.1.2 Impact of the number of frequency . . . . . . . . . . . . . . . . . 23 5.2 Anti-Jam Packet Delivery Ratio . . . . . . . . . . . . . . . . . . . . . . 24 5.2.1 Impact of the number of jammer . . . . . . . . . . . . . . . . . . 25 5.2.2 Impact of the number of frequency . . . . . . . . . . . . . . . . . 25 5.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.1 Impact of the number of jammer . . . . . . . . . . . . . . . . . . 26 5.3.2 Impact of the number of frequency . . . . . . . . . . . . . . . . . 28 5.4 Computation cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Conclusion 31 Reference 32

    [1] M. Strasser, S. Capkun, S. Capkun, and M. Cagalj. Jamming-resistant key establishment using uncoordinated frequency hopping. In IEEE S&P, 2008.
    [2] Kaigui Bian, Jung-Min Park, and Ruiliang Chen. Control channel establishment in cognitive radio networks using channel hopping. IEEE J. on Sel. Areas in Commun., 29(4):689--703, 2011.
    [3] Kaigui Bian and Jung-Min Park. Asynchronous channel hopping for establishing rendezvous in cognitive radio networks. In IEEE INFOCOM, 2011.
    [4] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. The feasibility of launching and detecting jamming attacks in wireless networks. In ACM MobiHoc, 2005.
    [5] Young-Hyun Oh and D.J. Thuente. Limitations of quorum-based rendezvous and key establishment schemes against sophisticated jamming attacks. In IEEE MILCOM, 2012.
    [6] C. Popper, M. Strasser, and S. Capkun. Anti-jamming broadcast communication using uncoordinated spread spectrum techniques. IEEE J. on Sel. Areas in Commun., 28(5):703--715, 2010.
    [7] Mario Strasser, Christina Pöpper, and Srdjan Čapkun. Efficient uncoordinated fhss anti-jamming communication. In ACM MobiHoc, 2009.
    [8] Qian Wang, Ping Xu, Kui Ren, and Mo Li. Delay-bounded adaptive ufh-based antijamming wireless communication. In IEEE INFOCOM, 2011.
    [9] Qian Wang, Ping Xu, Kui Ren, and X.-Y. Li. Towards optimal adaptive ufh-based anti-jamming wireless communication. IEEE J. on Sel. Areas in Commun., 30(1):16--30, 2012.
    [10] Kaihe Xu, Qian Wang, and Kui Ren. Joint ufh and power control for effective wireless anti-jamming communication. In IEEE INFOCOM, 2012.
    [11] Eun-Kyu Lee, Soon Y. Oh, and Mario Gerla. Frequency quorum rendezvous for fast and resilient key establishment under jamming attack. ACM SIGMOBILE Mob. Comput. Commun. Rev., 14(4):1--3, 2010.
    [12] D. Wells. The penguin dictionary of curious and interesting numbers. Middlesex, England: Penguin Books, page 45, 1986.
    [13] Eun-Kyu Lee, S.Y. Oh, and M. Gerla. Timely and robust key establishment under jamming attack in critical wireless networks. In IEEE MILCOM, 2011.
    [14] NS3-http://www.nsnam.org/.

    QR CODE
    :::