跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊仕勤
Shih-Chin Yang
論文名稱: 氧化鎂薄膜作為電極保護膜之研究
Research of magnesium oxide film as the protective film for electrodes
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 58
中文關鍵詞: 氧化鎂保護膜退火處理離子助鍍
外文關鍵詞: annealing process, IAD, MgO, protective film
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是以電子鎗蒸鍍系統來製鍍氧化鎂薄膜,研究製鍍參數對氧化鎂薄膜的影響,其中包括薄膜的光學特性、結晶形態、水氣吸收及微觀結構。 光學特性方面,在較大陽極電壓的離子助鍍下,氧化鎂薄膜有最大的折射率;結晶特性方面,高溫下製鍍出來的氧化鎂薄膜,其結晶性越好,而退火處理更能進一步的增進氧化鎂薄膜的結晶強度;水氣吸收方面,除當離子助鍍時有較緻密的膜質外,在所有製程中均發現了少量的水氣吸收;表面粗糙度在本實驗中,發現當陽極電壓越大時,表面粗糙度越小,另外在高溫退火也有降低表面粗糙度的效果。


    The study of magnesium oxide optical thin film by using electron beam evaporation system for protective films was investigated in this thesis. The crystalline properties and optical stability including refractive index, surface roughness, were determined from deposition parameter. Besides, annealing process and evaporation with ion assisted deposition also affect the crystalline properties and optical stability. When the anode voltage is higher, the magnesium oxide optical thin film annexed the best refractive index. The higher substrate temperature will improve the crystalline intensity. Annealing process will also boost the crystalline intensity more extended. Because of the moisture absorption, thin films will not acquire good qualities other than using ion assisted. In our investigation, we found that when the anode voltages increased, the thin film surface roughness was decreased. Besides, the annealing process has the same to reduce the surface roughness as well.

    摘要 ......................................................................................................... I Abstract .................................................................................................. II 致謝 ....................................................................................................... III 圖目錄 ................................................................................................... VI 表目錄 ................................................................................................ VIII 第一章 緒論 ........................................................................................ 1 1.1 前言 ........................................................................................ 1 1.2 文獻回顧 ................................................................................ 1 1.3 實驗動機 ................................................................................ 4 第二章 實驗原理 ................................................................................ 5 2.1 物理氣相沈積法 ..................................................................... 5 2.2 電子鎗蒸鍍法(Electron Beam Gun Evaporation)原理 ........... 5 2.3 包絡法 .................................................................................... 9 第三章 實驗架構與量測儀器 ........................................................... 12 3.1 實驗流程 .............................................................................. 12 3.2 實驗架構 .............................................................................. 13 3.2.1 基板的準備 ................................................................ 13 3.2.2 蒸鍍系統 .................................................................... 14 V 3.2.3 離子源 ........................................................................ 15 3.3 薄膜性質量測儀器 ............................................................... 16 3.3.1 光譜儀 ........................................................................ 16 3.3.2 X光繞射儀................................................................. 16 3.3.3 傅立葉轉換紅外光譜儀 ............................................. 17 3.3.4 原子力顯微鏡............................................................. 17 3.4 實驗參數 .............................................................................. 18 第四章 實驗結果與討論 ................................................................... 21 4.1 氧化鎂穿透光譜圖之分析 ................................................... 21 4.2 結晶型態及強度之分析 ....................................................... 29 4.3 薄膜緻密度之分析 ............................................................... 34 4.4 表面粗糙度之分析 ............................................................... 36 第五章 結論 ...................................................................................... 44 Conclusion ............................................................................................. 46 參考文獻 ............................................................................................... 48

    [1] Joseph W. Horton, Bell Telephone Laboratories, “Television system,” United States Patent, 2003294, Jun 4(1935) [2] David C. Hinson, Owens-Illinois, Inc., “Gas mixture for gas discharge device,” United States Patent, 3886393, May 27( 1975) [3] Toshinori Urade, Toshiaki Iemori, Mitsuoki Osawa, Norihiko Nakayama, Itsuo Morita, “A protecting layer for the dielectric in AC plasma panels,” IEEE Transactions on Electron Devices, Vol. 23, NO. 3, March, 313-318(1976) [4] James A. Ogle, George E. Holz, “Panel-Type display device,” United States Patent, 4035689, July 12(1977) [5] Larry F. Webber, Plasmaco Inc., “Plasma panel exhibiting enhanced contrast,” United States Patent, 5745086, Apr. 28(1998) [6] G. W. Dick, et al., “A three-electrode ac plasma HVCMOS Drive Scheme,” SID Symposium, 212-216(1986) [7] Tsutae Shinoda, Toshiyuki Nanto, Fujitsu Limited, “Three-component gas mixture for fluorescent gas-discharge color display panel,” United States Patent, 4926095, May 15(1990)[8] Tsutae Shinoda, “High level gray scale for AC plasma display panels using address-display period-separated sub-field method,” Transaction of IEICE C-2, Vol. 3, 349-355(1998) [9] Heiju Uchiike, Kenji Miura, Norihiko Nakayama, Tsutae Shinoda, Yoshifumi Fukushima, “Secondary electron emission characteristics of dielectric materials in AC-Operated plasma display panels,” IEEE Transactions on Electron Devices, Vol. ED-23, No. 11, November(1976) [10] Eun-Ha Choi, Hyun-Joo Oh, Young-Guon Kim, Jae-Jun Ko, Dae-Il Kim, Guangsup Cho, Guang-Sup Cho, Jae-Yong Lim, Jin-Goo Kim, “Measurement of secondary electron emission coefficient of MgO protective layer with various crystallinities,” Japan Journal of Applied Physics, Vol. 37, No. 12B, 7015-7018, December(1998) [11] Eun-Ha Choi, Jae-Yong Lim, Young-Guon Kim, Jae-Jun Ko, Dae-Il Kim, Choon-Woo Lee, Guang-Sup Cho, “ Secondary electron emission coefficient of a MgO single crystal,” Journal of Applied Physics, Vol. 86, Number 11, 6525-6527(1999) [12] Ari Ide-Ektessabi, Hiroshi Nomura, Nobuto Yasui, Yuji Tsukuda, “Ion beam Processing of MgO thin films,” Thin solid films,447-448, 383-387(2004)[13] 李正中 “薄膜光學與鍍膜技術”, 台北 藝軒出版社(第五版), 2005 [14] 藍永強, 鍾岳宏, 徐兆鋐, 張德安, 柳克強, “電漿科學與帄面顯示器”, 物理雙月刊, Vol. 28, NO. 2, 452-465(2006) [15] 練政廷, “脈衝式離子源助鍍氟化鎂薄膜之研究,” 國立中央大學光電所碩士論文, 2006 [16] 童啟弘, “離子輔助熱蒸鍍紫外光學薄膜之研究,” 國立中央大學光電所碩士論文, 2002

    QR CODE
    :::