| 研究生: |
鄒翔龍 Shiang-lung Tsou |
|---|---|
| 論文名稱: |
以褐藻酸鈉調控聚電解質多層膜中DNA的吸附與釋放行為 The modulation of DNA adsorption and release from polyelectrolyte multilayer using sodium alginate. |
| 指導教授: |
胡威文
Wei-wen Hu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 褐藻酸鈉 、聚乙烯亞胺 、疊層組裝 |
| 外文關鍵詞: | layer by layer, alginate, polyethyleneimine |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
褐藻酸鈉(Sodium alginate, ALG)是一個帶有負電的生物可降解高分子,在同一個環境中會與同帶負電的DNA去競爭正電高分子。在文獻中曾提到將褐藻酸鈉/DNA/聚乙烯亞胺(Polyethyleneimine, PEI)三種成分複合而成奈米粒子,藉由競爭來降低DNA與聚乙烯亞胺間的相互關係,並因此提高了基因轉染的效果。由於疊層組裝(Layer-by-Layer)系統對於細胞轉染表現還有增進的空間,所以在本篇研究中,我們想要利用褐藻酸鈉、DNA與聚乙烯亞胺三成分進行疊層組裝疊層組裝,形成(DNA/PEI/ALG/PEI)的模型,探討其物化性質並觀察是否也同樣能提升對細胞的轉染表現。從接觸角與紅外光譜來看我們知道三成分確實有吸附於材料表面。接著,在紫外光度計與石英微量天平的量測觀察中發現隨著褐藻酸鈉層濃度的提升(0.004, 0.02, 0.1, 0.5 g/l),對於疊層組裝中DNA的吸附與釋放效果也會跟著提高,相較於由DNA與聚乙烯亞胺製備的疊層組裝在DNA吸附量來說可以提升到兩倍以上並且DNA釋放量提高50%左右,並且更深入去由大小與複合程度探討多層膜釋放出來粒子型態。結果顯示,在褐藻酸鈉濃度為0.1 g/l製備的疊層組裝能得到最佳的細胞轉染表現。
Sodium alginate(ALG) is a biodegradable polyelectrolyte with negative charges, which may compete the positive polyelectrolyte with anionic DNA. Therefore, some reports indicated that alginate can interact with DNA/polycation and form a triple component complex. This particle is able to enhance the gene transfectrion efficiency due to electrostatic neutralization of the complex. Due to this property, we want to complex the three component with layer-by-layer(LbL) to enhance the transfection ability. So, in this study, we use different alginate concentration(0.004, 0.02, 0.1, 0.5 g/l) create the (DNA/PEI/ALG/PEI)4 LbL model and investigate the properties of DNA changes during the multilayer system measuring by ATR-FTIR, contact angle, quartz crystal microbalance (QCM), UV-vis, DLS and eletrophoresis gel. We observe there is two-fold DNA release at the 0.1g/l alginate assembly condition and the DNA adsorption increase with increasing alginate concentration. Also, the particle size which release from the multilayer increase too. At least, we use the multilayer to transfect the NIH/3T3 cells. Observing the transfction efficiency at 0.1g/l of (DNA/PEI/ALG/PEI)4 multilayer enhanced up to three times compare to (DNA/PEI)4 .
1. Parveen, S..Sahoo, S.K., Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. European journal of pharmacology, 2011.
2. Shakesheff, K.M., Drug Delivery Systems. Handbook of Biodegradable Polymers, 2011: p. 363-378.
3. Bailey, M.M..Berkland, C.J., Nanoparticle formulations in pulmonary drug delivery. Medicinal research reviews, 2009. 29(1): p. 196-212.
4. Lu, Z.Z., Wu, J., Sun, T.M., Ji, J., Yan, L.F..Wang, J., Biodegradable polycation and plasmid DNA multilayer film for prolonged gene delivery to mouse osteoblasts. Biomaterials, 2008. 29(6): p. 733-741.
5. Jiang, Q.H., Liu, L., Peel, S., Yang, G.L., Zhao, S.F..He, F.M., Bone response to the multilayer BMP‐2 gene coated porous titanium implant surface. Clinical Oral Implants Research, 2011.
6. 張萬豐, 探討聚乙烯亞胺轉殖綠螢光蛋白基因進入老鼠胚胎纖維母細胞的最佳條件. 2008.
7. Patnaik, S., Aggarwal, A., Nimesh, S., Goel, A., Ganguli, M., Saini, N., Singh, Y..Gupta, K., PEI-alginate nanocomposites as efficient in vitro gene transfection agents. Journal of controlled release, 2006. 114(3): p. 398-409.
8. 俞耀庭, 生物醫用材料2004: 新文京開發.
9. Langer, R., Vacanti, J.P., Tissue engineering. Science, 1993: p. 920–926.
10. Macri, L., Silverstein, D..Clark, R.A.F., Growth factor binding to the pericellular matrix and its importance in tissue engineering. Advanced drug delivery reviews, 2007. 59(13): p. 1366-1381.
11. Tabata, Y., Yamamoto, M..Ikada, Y., Biodegradable hydrogels for bone regeneration through growth factor release. Pure and applied chemistry, 1998. 70(6): p. 1277-1282.
12. Franceschi, R., Biological approaches to bone regeneration by gene therapy. Journal of dental research, 2005. 84(12): p. 1093-1103.
13. Goldman, C.K., Soroceanu, L., Smith, N., Gillespie, G.Y., Shaw, W., Burgess, S., Bilbao, G..Curiel, D.T., In vitro and in vivo gene delivery mediated by a synthetic polycationic amino polymer. Nature biotechnology, 1997. 15(5): p. 462-466.
14. Breunig, M., Lungwitz, U., Liebl, R., Fontanari, C., Klar, J., Kurtz, A., Blunk, T..Goepferich, A., Gene delivery with low molecular weight linear
75
polyethylenimines. The journal of gene medicine, 2005. 7(10): p. 1287-1298.
15. Kim, S.W., Ogawa, T., Tabata, Y..Nishimura, I., Efficacy and cytotoxicity of cationic‐agent–mediated nonviral gene transfer into osteoblasts. Journal of Biomedical Materials Research Part A, 2004. 71(2): p. 308-315.
16. Li, S.D..Huang, L., Non-viral is superior to viral gene delivery. Journal of controlled release: official journal of the Controlled Release Society, 2007. 123(3): p. 181.
17. Nell, M., Votsch, M., Vierheilig, H., Steinkellner, S., Zitterl‐Eglseer, K., Franz, C..Novak, J., Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). Journal of the Science of Food and Agriculture, 2009. 89(6): p. 1090-1096.
18. Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P..Grondahl, L., Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, 2007. 8(8): p. 2533-2541.
19. Li, Z., Ramay, H.R., Hauch, K.D., Xiao, D..Zhang, M., Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005. 26(18): p. 3919-3928.
20. Chen, S.C., Wu, Y.C., Mi, F.L., Lin, Y.H., Yu, L.C..Sung, H.W., A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Journal of controlled release, 2004. 96(2): p. 285-300.
21. Ye, S., Wang, C., Liu, X..Tong, Z., Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan and alginate multilayer films. Journal of controlled release, 2005. 106(3): p. 319-328.
22. Karatas, A..Baykara, T., Studies of indomethacin inserts prepared using water-soluble polymers. I. Effect of the preparation method and polymers on drug release. STP pharma sciences, 2000. 10(2): p. 187-193.
23. Douglas, K.L., Piccirillo, C.A..Tabrizian, M., Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. Journal of controlled release, 2006. 115(3): p. 354-361.
24. Patnaik, S., Arif, M., Pathak, A., Singh, N..Gupta, K., PEI-alginate nanocomposites: Efficient non-viral vectors for nucleic acids. International journal of pharmaceutics, 2010. 385(1-2): p. 194-202.
25. Gao, X., Kim, K.S..Liu, D., Nonviral gene delivery: what we know and what is next. The AAPS journal, 2007. 9(1): p. 92-104.
26. Yang, N.S., Burkholder, J., Roberts, B., Martinell, B..McCabe, D., In vivo and
76
in vitro gene transfer to mammalian somatic cells by particle bombardment. Proceedings of the National Academy of Sciences, 1990. 87(24): p. 9568.
27. Plank, C., Mechtler, K., Szoka Jr, F.C..Wagner, E., Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Human gene therapy, 1996. 7(12): p. 1437-1446.
28. Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M..Danielsen, M., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences, 1987. 84(21): p. 7413.
29. Mao, H.Q., Roy, K., Troung-Le, V.L., Janes, K.A., Lin, K.Y., Wang, Y., August, J.T..Leong, K.W., Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of controlled release, 2001. 70(3): p. 399-421.
30. Zanta, M.A., Boussif, O., Adib, A..Behr, J.P., In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjugate chemistry, 1997. 8(6): p. 839-844.
31. Gaucher, G., Marchessault, R.H..Leroux, J.C., Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. Journal of controlled release, 2010. 143(1): p. 2-12.
32. Criscione, J.M., Le, B.L., Stern, E., Brennan, M., Rahner, C., Papademetris, X..Fahmy, T.M., Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials, 2009. 30(23): p. 3946-3955.
33. Nuzzo, R.G..Allara, D.L., Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983. 105(13): p. 4481-4483.
34. Tang, Z., Wang, Y., Podsiadlo, P..Kotov, N.A., Biomedical Applications of Layer‐by‐Layer Assembly: From Biomimetics to Tissue Engineering. Advanced Materials, 2006. 18(24): p. 3203-3224.
35. Decher, G., Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science, 1997. 277(5330): p. 1232.
36. Zhu, Y..Sun, Y., The influence of polyelectrolyte charges of polyurethane membrane surface on the growth of human endothelial cells. Colloids and Surfaces B: Biointerfaces, 2004. 36(1): p. 49-55.
37. Zhu, H., Ji, J..Shen, J., Construction of multilayer coating onto poly-(dl-lactide) to promote cytocompatibility. Biomaterials, 2004. 25(1): p. 109-117.
38. Glawe, J.D., Hill, J.B., Mills, D.K..McShane, M.J., Influence of channel width
77
on alignment of smooth muscle cells by high‐aspect‐ratio microfabricated elastomeric cell culture scaffolds. Journal of Biomedical Materials Research Part A, 2005. 75(1): p. 106-114.
39. Liu, X., Smith, L., Wei, G., Won, Y..Ma, P.X., Surface engineering of nano-fibrous poly (L-lactic acid) scaffolds via self-assembly technique for bone tissue engineering. Journal of biomedical nanotechnology, 2005. 1(1): p. 54-60.
40. Lee, J., Shanbhag, S..Kotov, N.A., Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures. J. Mater. Chem., 2006. 16(35): p. 3558-3564.
41. Ariga, K., Hill, J.P..Ji, Q., Biomaterials and biofunctionality in layered macromolecular assemblies. Macromolecular bioscience, 2008. 8(11): p. 981-990.
42. Hu, Y., Cai, K., Luo, Z., Zhang, R., Yang, L., Deng, L..Jandt, K.D., Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials, 2009. 30(21): p. 3626-3635.
43. Muller, M., Kessler, B., Adler, H.J..Lunkwitz, K. Reversible switching of protein uptake and release at polyelectrolyte multilayers detected by ATR‐FTIR spectroscopy. 2004. Wiley Online Library.
44. Yamauchi, F., Kato, K..Iwata, H., Layer-by-layer assembly of poly (ethyleneimine) and plasmid DNA onto transparent indium-tin oxide electrodes for temporally and spatially specific gene transfer. Langmuir, 2005. 21(18): p. 8360-8367.
45. Izumrudov, V.A., Kharlampieva, E..Sukhishvili, S.A., Multilayers of a globular protein and a weak polyacid: Role of polyacid ionization in growth and decomposition in salt solutions. Biomacromolecules, 2005. 6(3): p. 1782-1788.
46. Quinn, J.F..Caruso, F., Facile tailoring of film morphology and release properties using layer-by-layer assembly of thermoresponsive materials. Langmuir, 2004. 20(1): p. 20-22.
47. Quinn, J.F..Caruso, F., Thermoresponsive nanoassemblies: Layer-by-layer assembly of hydrophilic-hydrophobic alternating copolymers. Macromolecules, 2005. 38(8): p. 3414-3419.
48. Jewell, C.M., Zhang, J., Fredin, N.J..Lynn, D.M., Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells. Journal of controlled release, 2005. 106(1): p. 214-223.
49. Jessel, N., Oulad-Abdelghani, M., Meyer, F., Lavalle, P., Haikel, Y., Schaaf,
78
P..Voegel, J.C., Multiple and time-scheduled in situ DNA delivery mediated by β-cyclodextrin embedded in a polyelectrolyte multilayer. Proceedings of the National Academy of Sciences, 2006. 103(23): p. 8618-8621.
50. Lin, Q.K., Ren, K.F..Ji, J., Hyaluronic acid and chitosan-DNA complex multilayered thin film as surface-mediated nonviral gene delivery system. Colloids and Surfaces B: Biointerfaces, 2009. 74(1): p. 298-303.
51. Saurer, E.M., Jewell, C.M., Kuchenreuther, J.M..Lynn, D.M., Assembly of erodible, DNA-containing thin films on the surfaces of polymer microparticles: toward a layer-by-layer approach to the delivery of DNA to antigen-presenting cells. Acta biomaterialia, 2009. 5(3): p. 913-924.
52. 謝嘉民, 賴一凡, 林永昌.枋志堯, 光激發螢光量測的原理, 架構及應用. 科儀新知, 2005(146): p. 39-51.
53. 陳秀美, 林美玲.陳慎泓, Fabrication of piezoelectric biochips with self-assembled alkanethiol layer and hydrocoating. Journal of the Chinese Institute of Chemical Engineers, 2003. 34(1): p. 151-160.
54. Yokoyama, K., Ikebukuro, K., Tamiya, E., Karube, I., Ichiki, N..Arikawa, Y., Highly sensitive quartz crystal immunosensors for multisample detection of herbicides. Analytica chimica acta, 1995. 304(2): p. 139-145.
55. Caruso, F., Rodda, E., Furlong, D.N., Niikura, K..Okahata, Y., Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Analytical Chemistry, 1997. 69(11): p. 2043-2049.
56. Chen, S.H., Chuang, Y.C., Lu, Y.C., Lin, H.C., Yang, Y.L..Lin, C.S., A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Nanotechnology, 2009. 20: p. 215501.
57. Liu, Y..Hu, N., Loading/release behavior of (chitosan/DNA) n layer-by-layer films toward negatively charged anthraquinone and its application in electrochemical detection of natural DNA damage. Biosensors and Bioelectronics, 2007. 23(5): p. 661-667.
58. Zauner, W., Farrow, N.A..Haines, A.M.R., In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. Journal of controlled release, 2001. 71(1): p. 39-51.
59. Wang, X., Zhou, L., Ma, Y., Li, X..Gu, H., Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Research, 2009. 2(5): p. 365-372.
60. Jiang, G., Min, S.H., Oh, E.J..Hahn, S.K., DNA/PEI/Alginate polyplex as an efficientin vivo gene delivery system. Biotechnology and Bioprocess Engineering, 2007. 12(6): p. 684-689.
79
61. Hong, H., Lee, S., Kim, T., Chung, M..Choi, C., Surface modification of the polyethyleneimine layer on silicone oxide film via UV radiation. Applied Surface Science, 2009. 255(12): p. 6103-6106.
62. Porcel, C., Lavalle, P., Ball, V., Decher, G., Senger, B., Voegel, J.C..Schaaf, P., From exponential to linear growth in polyelectrolyte multilayers. Langmuir, 2006. 22(9): p. 4376-4383.
63. Yu, G..Fan, Y., Preparation of poly (D, L-lactic acid) scaffolds using alginate particles. Journal of Biomaterials Science, Polymer Edition, 2008. 19(1): p. 87-98.
64. Schlenoff, J.B..Dubas, S.T., Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules, 2001. 34(3): p. 592-598.