跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許博智
Po-Chih Hsu
論文名稱: 耀變體之光譜性質及無線電波輻射時變性
Spectral Properties and Radio Variability of Blazars
指導教授: 黃崇源
Chorng-Yuan Hwang
郭駿毅
Jun-Yi Koay
松下聰樹
Satoki Matsushita
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 134
中文關鍵詞: 活躍星系核耀變體光譜特性無線電光譜時變性星系黑洞物理星系噴流類星體星系無線電連續光譜
外文關鍵詞: active galactic nuclei, blazar, spectral properties, radio variability, physcis of black holes, jets of galaxies, quasars, radio continuum of galaxies
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了有全方位的了解耀變體的光譜特性。在研究中,我們使用第五版Roma-BZCAT多波段耀變體目錄(the 5-th edition Roma-BZCAT Multi-frequency Catalog of Blazars)、ALMA校準目錄(ALMA Calibrator Catalog)以及各頻率的觀測資料進行耀變體的光譜特性分析。在1366個耀變體樣本中,我們計算無線電-毫米波頻譜指數和無線電頻譜指數,並擬合其全頻率頻譜能量分佈。分析表明,在蝎虎座天體(BL Lacertae object)與平譜電波類星體(flat spectrum radio quasar)中,相較於無線電-毫米波頻譜指數,無線電頻譜指數顯示出更廣泛的分佈。此外,我們將平譜電波類星體根據紅移,分為高紅移和低紅移的子分類。研究表明,高紅移平譜電波類星體表現出相較低紅移平譜電波類星體和蝎虎做天體有更平緩的無線電頻譜指數。此外,我們發現蝎虎座天體及平譜電波類星體的無線電-毫米波頻譜指數與無線電頻譜指數和同步輻射頻率峰值與光度之間沒有顯著相關性。

    此外,我們還研究耀變體本質上的差異,藉由探索耀變體的無線電時變性。我們研究所使用的的耀變體取自於15 GHz歐文斯谷無線電天文台的耀變體監測計劃(15 GHz Owens Valley Radio Observatory Blazar Monitoring Program),此計畫自2008年開始使用15 GHz觀測耀變體至今。在計畫監測的1157個耀變體中,我們研究耀變體時變震幅和特徵時變尺度(基於擬合結構函數(structure function)的計算結果),與特長基線干涉儀測量的毫弧秒尺度的核心尺寸之間的依賴性。我們發現,較緊湊的角核心尺寸表現出更大的時變震幅和更短的特徵時變尺度,而真實的核心尺寸與時變震幅以及特徵時變尺度也具有顯著相關。此外,在消除因星際散射造成角核心尺寸放大效應後,時變震幅與1 GHz的固有角核心尺寸具有顯著相關性。


    To obtain a comprehensive understanding of the spectral properties of blazars, extensive analysis was conducted using the multi-frequency data from the 5-th edition Roma-BZCAT and ALMA Calibrator Catalog, along with other archival data. This involved calculating the radio-mm/radio spectral index and fitting broadband spectral energy distribution for 1366 sources. Analysis revealed that the radio spectral index displayed a broader distribution compared to the radio-mm spectral index of both BL Lacertae objects (BLOs) and flat-spectrum radio quasars (FSRQs).In addition, these FSRQs were categorized based on their redshifts into high-z and low-z FSRQs. The high-z FSRQs exhibit significantly flatter radio spectral index than the low-z FSRQs and BLOs. Additionally, we found no significant correlation between the radio-mm/radio spectral indices and the synchrotron peak frequencies and luminosities of both BLOs and FSRQs.

    In addition, we also study the radio variability of blazars to investigate their intrinsically variable nature. We focus on the radio variability of 1157 blazars observed at 15~GHz through the Owens Valley Radio Observatory (OVRO) Blazar Monitoring Program. We investigate the dependence of the variability amplitudes and timescales, which were characterized based on model fitting to the structure functions, on the milliarcsecond core sizes measured by Very Long Baseline Interferometry. We find that the more compact sources at milliarcsecond scales demonstrate larger variability amplitudes and shorter variability timescales compared to the more extended sources. Moreover, linear physical core sizes versus variability amplitudes, and intrinsic timescales are also significantly correlated. Besides, the variability amplitudes have significant correlation with the 1~GHz intrinsic core sizes, which are derived by deconvoluting the broadening effects of the interstellar scattering.

    電子論文授權書 Authorisation of the Electronic Thesis i 指導教授推薦書 Recommendation Letter from the Thesis Advisor iii 口試委員審定書 Verification from the Oral Examination Committee v 英文摘要 Abstract in English vii 中文摘要 Abstract in Chinese ix 誌謝 Acknowledgements xi List of Figures xvii List of Tables xix 1 Introduction 1 1.1 AGN and Blazar ................................ 1 1.1.1 Radio-Loud AGNs ........................... 2 1.1.2 Radio-Quiet AGNs ........................... 3 1.2 Blazar Variability................................ 4 1.2.1 Intrinsic Variability of Blazars..................... 5 1.2.2 Extrinsic Radio Variability of Blazars................. 5 1.2.3 Goals of this Study ................. 6 1.3 AGN Radio Spectral Index........................... 7 1.4 Spectral Energy Distribution of Blazars.................... 8 2 Multi-frequency Data and Core Sizes Measurement 11 2.1 ROMA-BZCAT................................. 12 2.2 ALMA Calibrator Catalog(ACC)....................... 13 2.3 Faint Images of the Radio Sky at Twenty-centimeters (FIRST) ....... 14 2.4 Very Large Array Sky Survey(VLASS).................... 16 2.5 GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) 16 2.6 Wide-field Infrared Survey Explorer(WISE) ................. 17 2.7 Sloan Digital Sky Survey(SDSS) ....................... 18 2.8 XMM-OM.................................... 18 2.9 Swift-BAT.................................... 19 2.10 X-ray Multi-Mirror Newton(XMM-Newton) ................. 20 2.11 ROSAT ..................................... 20 2.12 Energetic Gamma-Ray Experiment Telescope (EGRET).................................... 21 2.13 Fermi Large Area Telescope (Fermi-LAT)................... 22 2.14 The 15 GHz OVRO Blazar Monitoring Program ............... 23 2.15 VLBI Multi-frequency Core Sizes Measurement............... 24 3 Analysis and Methodology 27 3.1 Unifying Observed Source Flux ........................ 27 3.1.1 WISE .................................. 28 3.1.2 SDSS................................... 29 3.1.3 XMM-OM................................ 30 3.1.4 Swift-BAT................................ 30 3.1.5 XMM-Newton.............................. 31 3.1.6 ROSAT ................................. 31 3.1.7 EGRET and Fermi-LAT ........................ 32 3.2 Fermi gamma-ray Upper limit Constraint................... 32 3.3 K-correction................................... 34 3.4 Spectral Energy Distribution of Blazars.................... 35 3.4.1 BLOs SED model fit .......................... 36 3.4.2 FSRQs SED model fit ......................... 38 3.4.2.1 FSRQ BH Mass Constraint ................. 39 3.5 Characterizing Blazar Variability Amplitudes and Timescales ........45 3.5.1 Deriving the Structure Function(SF)................. 47 3.5.2 Structure Function (SF) Fitting.................... 47 4 Results and Discussion 51 4.1 Blazar Spectral Index.............................. 51 4.1.1 Radio-mm and Radio Spectral Index of BLOs and FSRQs..... 51 4.1.1.1 Radio-mm/Radio Spectral Index of BLOs ......... 52 4.1.1.2 Radio-mm/Radio Spectral Index of FSRQs ........ 53 4.1.1.3 Comparison of BLO and FSRQ Spectral Indices ...... 53 4.1.1.4 Dependence of Radio-mm/Radio Spectral Index on Redshift 54 4.1.1.5 Discussion of Spectral Index of BLOs and FSRQs ..... 59 4.1.2 Dependence of Radio-mm/Radio Spectral Index on Observed/Linear Core Sizes.............................. 59 4.1.2.1 Dependence of Radio-mm Spectral Indices on Observed Core Sizes........................... 59 4.1.2.2 Dependence of Radio Spectral Indices on Observed Core Sizes.............................. 61 4.1.2.3 Dependence of Radio-mm Spectral Indices on Physical CoreSizes........................... 62 4.1.2.4 Dependence of Radio Spectral Indices on Physical Core Sizes 63 4.1.2.5 Discussion of Spectral index and Core Size Relationship . 65 4.2 SED Peak Frequency and Peak Luminosity Density of Blazars ....... 65 4.2.1 Comparison Between BLOs and FSRQs................ 66 4.2.2 Comparison With Spectral Indices .................. 69 4.2.3 Comparison With Jet Power...................... 71 4.2.4 Discussion of Peak Frequency and Peak Luminosity Density of Blazars 73 4.3 Milliarcsecond Core Size Dependence of the Radio Variability of Blazars .. 74 4.3.1 Dependence of Variability Amplitudes on Core Sizes ......... 74 4.3.1.1 Dependence of Variability Amplitudes on Observed Angu- larCoreSizes......................... 74 4.3.1.2 Dependence of Variability Amplitudes on Linear Core Sizes 80 4.3.1.3 Discussion of the Variability Amplitude and Core Size Relationship........................... 82 4.3.2 Dependence of Variability Timescale on Core Sizes ......... 83 4.3.2.1 Dependence of Characteristic Timescale on Angular Core Sizes.............................. 84 4.3.2.2 Dependence of Intrinsic Timescale on Linear Core Sizes ..85 4.3.2.3 Discussion of Dependence of Variability Timescale on Core Sizes.............................. 87 4.3.3 Examining the Effects of Interstellar Scattering at 1 GHz ...... 88 4.3.3.1 Derivation of Intrinsic and Scattering Sizes from the ObservedCoreSizes.......................88 4.3.3.2 Dependence of Long Term Intrinsic Variability on the Intrinsic, Scattering, and Observed Core Sizes ........ 90 4.3.3.3 Dependence of Variability Timescales on the Intrinsic, Scattering,andObservedCoreSizes............... 92 4.3.3.4 Dependence of Variability Amplitudes at 4 days on the Intrinsic, Scattering, and Observed Core Sizes ....... 92 5 Conclusion and Summary 97 6 Bibliography 101

    Abdo A. A., et al., 2010, ApJ, 716, 30
    Aeronautics N., Center S. A. G. S. F., 2018, Likelihood Overview, https: //fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/ Cicerone_Likelihood/Likelihood_overview.html
    Ahnen M. L., et al., 2017, A&A, 603, A29
    Alam S., et al., 2015, ApJS, 219, 12
    Alam et al. 2016, VizieR Online Data Catalog, p. V/147
    Alexander K. D., van Velzen S., Horesh A., Zauderer B. A., 2020, Space Sci. Rev., 216, 81
    Antonucci R., 1993, ARA&A, 31, 473
    Aranzana E., Ko ̈rding E., Uttley P., Scaringi S., Bloemen S., 2018, MNRAS, 476, 2501
    Armstrong J. W., Rickett B. J., Spangler S. R., 1995, ApJ, 443, 209
    Aschenbach B., Citterio O., Ellwood J. M., Jensen P., de Korte P., Peacock A., Willingale R., Burke W. R., 1986, in ESA Special Publication.
    Atwood W. B., et al., 2009, ApJ, 697, 1071
    Becker R. H., White R. L., Helfand D. J., 1995, ApJ, 450, 559
    Beichman C. A., Neugebauer G., Habing H. J., Clegg P. E., Chester T. J., eds, 1988, Infrared Astronomical Satellite (IRAS) Catalogs and Atlases.Volume 1: Explanatory Supplement. Vol. 1
    Bell M. E., et al., 2014, MNRAS, 438, 352
    Bell M. E., Huynh M. T., Hancock P., Murphy T., Gaensler B. M., Burlon D., Trott C.,
    Bannister K., 2015, MNRAS, 450, 4221
    Bentz M. C., Peterson B. M., Netzer H., Pogge R. W., Vestergaard M., 2009, ApJ, 697, 160
    Bignall H. E., et al., 2003, ApJ, 585, 653
    Blandford R. D., Ko ̈nigl A., 1979, ApJ, 232, 34
    Blandford R. D., Rees M. J., 1978a, in Wolfe A. M., ed., BL Lac Objects. pp 328–341
    Blandford R. D., Rees M. J., 1978b, Phys. Scr, 17, 265
    Bock D. C. J., Large M. I., Sadler E. M., 1999, AJ, 117, 1578
    Boller T., Freyberg M. J., Truemper J., Haberl F., Voges W., Nandra K., 2016a, VizieR Online Data Catalog, pp J/A+A/588/A103
    Boller T., Freyberg M. J., Tru ̈mper J., Haberl F., Voges W., Nandra K., 2016b, A&A, 588, A103
    Bonato M., et al., 2019, MNRAS, 485, 1188
    Bower G. C., Whysong D., Blair S., Croft S., Keating G., Law C., Williams P. K. G.,
    Wright M. C. H., 2011, ApJ, 739, 76
    Bowman J. D., et al., 2013, PASA, 30, e031 Camenzind M., Krockenberger M., 1992, A&A, 255, 59 Celotti A., Ghisellini G., 2008, MNRAS, 385, 283
    Chiang J., Bo ̈ttcher M., 2002, ApJ, 564, 92
    Ciaramella A., et al., 2004, A&A, 419, 485
    Coffey D., et al., 2019, A&A, 625, A123
    Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
    Corbin M. R., 1992, ApJ, 391, 577
    Cordes J. M., Pidwerbetsky A., Lovelace R. V. E., 1986, ApJ, 310, 737 Cusumano G., et al., 2010, A&A, 524, A64
    Cutri R. M., et al., 2021, VizieR Online Data Catalog, p. II/328 Czerny B., Hryniewicz K., 2011, A&A, 525, L8
    De Breuck C., et al., 2001, AJ, 121, 1241
    Dennett-Thorpe J., de Bruyn A. G., 2003, A&A, 404, 113
    Doe S., et al., 2007, in Shaw R. A., Hill F., Bell D. J., eds, Astronomical Society of the Pacific Conference Series Vol. 376, Astronomical Data Analysis Software and Systems XVI. p. 543
    Donnarumma I., Rossi E. M., Fender R., Komossa S., Paragi Z., Van Velzen S., Prandoni I., 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14). p. 54 (arXiv:1501.04640), doi:10.22323/1.215.0054
    Evans P. A., et al., 2014, ApJS, 210, 8
    Fan J. H., et al., 2007, A&A, 462, 547
    Fanaroff B. L., Riley J. M., 1974, MNRAS, 167, 31P
    Feldman F. R., Weedman D. W., Balzano V. A., Ramsey L. W., 1982, ApJ, 256, 427
    Fermi LAT Collaboration 2010, ApJS, 188, 405
    Fermi LAT Collaboration 2012, ApJS, 199, 31
    Fermi LAT Collaboration 2015, ApJS, 218, 23
    Fermi LAT Collaboration 2020a, arXiv e-prints, p. arXiv:2005.11208
    Fermi LAT Collaboration 2020b, ApJS, 247, 33
    Fermi LAT Collaboration 2022, ApJS, 260, 53
    Finke J. D., 2016, ApJ, 830, 94
    Fossati G., Maraschi L., Celotti A., Comastri A., Ghisellini G., 1998, MNRAS, 299, 433
    Freeman P., Doe S., Siemiginowska A., 2001, in Starck J.-L., Murtagh F. D., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4477, Astro- nomical Data Analysis. pp 76–87 (arXiv:astro-ph/0108426), doi:10.1117/12.447161
    Gehrels N., et al., 2004, ApJ, 611, 1005
    Ghisellini G., Maraschi L., Dondi L., 1996, A&AS, 120, 503
    Ghisellini G., Tavecchio F., Foschini L., Ghirlanda G., Maraschi L., Celotti A., 2010, MNRAS, 402, 497
    Gibson R. R., Brandt W. N., 2012, ApJ, 746, 54
    Giommi P., Ansari S. G., Micol A., 1995, A&AS, 109, 267
    Gopal-Krishna Wiita P. J., 1992, A&A, 259, 109
    Gordon Y. A., et al., 2021, ApJS, 255, 30
    Greene J. E., Ho L. C., 2005, ApJ, 630, 122
    Gregory P. C., Scott W. K., Douglas K., Condon J. J., 1996, ApJS, 103, 427
    Haffner L. M., Reynolds R. J., Tufte S. L., Madsen G. J., Jaehnig K. P., Percival J. W., 2003, ApJS, 149, 405
    Hancock P. J., Drury J. A., Bell M. E., Murphy T., Gaensler B. M., 2016, MNRAS, 461, 3314
    Healey S. E., et al., 2008, ApJS, 175, 97
    Heckman T. M., Best P. N., 2014, ARA&A, 52, 589
    Heeschen D. S., 1984, AJ, 89, 1111
    Heeschen D. S., Rickett B. J., 1987, AJ, 93, 589
    Helfand D. J., White R. L., Becker R. H., 2015a, VizieR Online Data Catalog, p. VIII/92
    Helfand D. J., White R. L., Becker R. H., 2015b, ApJ, 801, 26
    Hodge J. A., Becker R. H., White R. L., Richards G. T., 2013, ApJ, 769, 125
    Hovatta T., Tornikoski M., Lainela M., Lehto H. J., Valtaoja E., Torniainen I., Aller M. F., Aller H. D., 2007, A&A, 469, 899
    Hovatta T., Nieppola E., Tornikoski M., Valtaoja E., Aller M. F., Aller H. D., 2008, A&A, 485, 51
    Hughes P. A., Aller H. D., Aller M. F., 1985, ApJ, 298, 301 Hurley-Walker N., et al., 2017, MNRAS, 464, 1146
    Impey C. D., Neugebauer G., 1988, AJ, 95, 307
    Ishibashi W., Courvoisier T. J. L., 2009, A&A, 504, 61 Jauncey D. L., Macquart J. P., 2001, A&A, 370, L9
    Jauncey D. L., Johnston H. M., Bignall H. E., Lovell J. E. J., Kedziora-Chudczer L., Tzioumis A. K., Macquart J.-P., 2003, Ap&SS, 288, 63
    Kawaguchi T., Mineshige S., Umemura M., Turner E. L., 1998, ApJ, 504, 671
    Kellermann K. I., 1966, ApJ, 146, 621
    Khachikian E. Y., Weedman D. W., 1974, ApJ, 192, 581
    Kimball A. E., Ivezi ́c Zˇ., 2008, AJ, 136, 684
    Koay J. Y., et al., 2011, AJ, 142, 108
    Koay J. Y., et al., 2018, MNRAS, 474, 4396
    Koay J. Y., et al., 2019, MNRAS, 489, 5365
    Komossa S., 2015, Journal of High Energy Astrophysics, 7, 148
    Kong M.-Z., Wu X.-B., Wang R., Han J.-L., 2006, Chinese J. Astron. Astrophys., 6, 396
    Koryukova T. A., Pushkarev A. B., Plavin A. V., Kovalev Y. Y., 2022, MNRAS, 515, 1736
    Kovalev Y. Y., et al., 2005, AJ, 130, 2473
    Kudryavtseva N. A., et al., 2011, A&A, 526, A51
    Lazio T. J. W., Ojha R., Fey A. L., Kedziora-Chudczer L., Cordes J. M., Jauncey D. L., Lovell J. E. J., 2008, ApJ, 672, 115
    Levenberg K., 1944, Quarterly of Applied Mathematics, 2, 164
    Lin D. N. C., Shields G. A., 1986, ApJ, 305, 28
    Liodakis I., Hovatta T., Huppenkothen D., Kiehlmann S., Max-Moerbeck W., Readhead A. C. S., 2018, ApJ, 866, 137
    Lister M. L., Homan D. C., 2005, AJ, 130, 1389
    Lister M. L., Aller M. F., Aller H. D., Hodge M. A., Homan D. C., Kovalev Y. Y., Pushkarev A. B., Savolainen T., 2018, ApJS, 234, 12
    Lodato G., Rossi E. M., 2011, MNRAS, 410, 359
    Lovell J. E. J., et al., 2008, ApJ, 689, 108
    Maraschi L., Ghisellini G., Celotti A., 1992, ApJ, 397, L5
    Markwardt C. B., Tueller J., Skinner G. K., Gehrels N., Barthelmy S. D., Mushotzky R. F., 2005, ApJ, 633, L77
    Marquardt D. W., 1963, Journal of the Society for Industrial and Applied Mathematics, 11, 431
    Mason K. O., et al., 2001, A&A, 365, L36
    Massaro E., Giommi P., Leto C., Marchegiani P., Maselli A., Perri M., Piranomonte S.,
    Sclavi S., 2009, A&A, 495, 691
    Massaro E., Maselli A., Leto C., Marchegiani P., Perri M., Giommi P., Piranomonte S.,
    2015, Ap&SS, 357, 75
    Mattox J. R., et al., 1996, ApJ, 461, 396
    Mauch T., Murphy T., Buttery H. J., Curran J., Hunstead R. W., Piestrzynski B., Robert- son J. G., Sadler E. M., 2003, MNRAS, 342, 1117
    NASA CGRO Science Support Center 2021, Introduction to EGRET, EGRET Data Products, and EGRET Data Analysis, https://heasarc.gsfc.nasa.gov/docs/ cgro/egret/egret_doc.html
    Narlikar J. V., 2002, An Introduction to Cosmology Third Edition. Cambridge University Press, p. 114–18
    Netzer H., 2015, ARA&A, 53, 365
    Neugebauer G., et al., 1984, ApJ, 278, L1
    Nieppola E., Tornikoski M., Valtaoja E., 2006, A&A, 445, 441
    Nieppola E., Hovatta T., Tornikoski M., Valtaoja E., Aller M. F., Aller H. D., 2009, AJ, 137, 5022
    Nigro C., Sitarek J., Gliwny P., Sanchez D., Tramacere A., Craig M., 2022, A&A, 660, A18
    Ofek E. O., Frail D. A., 2011, ApJ, 737, 45
    Oh K., et al., 2018a, VizieR Online Data Catalog, p. J/ApJS/235/4
    Oh K., et al., 2018b, ApJS, 235, 4
    Oke J. B., Gunn J. E., 1983, ApJ, 266, 713
    Padovani P., 2016, A&A Rev., 24, 13
    Padovani P., Giommi P., A ́braha ́m P., Csizmadia S., Moo ́r A., 2006, A&A, 456, 131
    Page M. J., et al., 2012, MNRAS, 426, 903
    Page M. J., et al., 2021, VizieR Online Data Catalog, p. II/370
    Peacock J. A., Gull S. F., 1981, MNRAS, 196, 611
    Petrov L., Taylor G. B., 2011, AJ, 142, 89
    Planck Collaboration 2013, VizieR Online Data Catalog, p. VIII/91
    Prince R., Agarwal A., Gupta N., Majumdar P., Czerny B., Cellone S. A., Andruchow I., 2021, A&A, 654, A38
    Pushkarev A. B., Kovalev Y. Y., 2015, MNRAS, 452, 4274
    Rani B., et al., 2013, A&A, 552, A11
    Readhead A. C. S., 1980, Phys. Scr, 21, 662
    Readhead A. C. S., Cohen M. H., Pearson T. J., Wilkinson P. N., 1978, Nature, 276, 768 Richards J. L., et al., 2011, ApJS, 194, 29
    Richards J. L., Hovatta T., Max-Moerbeck W., Pavlidou V., Pearson T. J., Readhead
    A. C. S., 2014, MNRAS, 438, 3058
    Rickett B. J., 1990, ARA&A, 28, 561
    Rickett B. J., Witzel A., Kraus A., Krichbaum T. P., Qian S. J., 2001, ApJ, 550, L11
    Ross K., 2020, in The Build-Up of Galaxies through Multiple Tracers and Facilities. p. 57,
    doi:10.5281/zenodo.3756534
    Sadler E. M., 2016, Astronomische Nachrichten, 337, 105
    Sambruna R. M., Maraschi L., Urry C. M., 1996, ApJ, 463, 444
    Scarpa R., Falomo R., 1997, A&A, 325, 109
    Scheuer P. A. G., Readhead A. C. S., 1979, Nature, 277, 182
    Seyfert C. K., 1943, ApJ, 97, 28
    SikoraM.,StawarzL􏰯.,ModerskiR.,NalewajkoK.,MadejskiG.M.,2009,ApJ,704,38
    Sloan Digital Sky Survey Collaboration 2015, SDSS Flux Calibration, https://www. sdss.org/dr13/algorithms/fluxcal/#SDSStoAB
    Thompson D. J., et al., 1993, ApJS, 86, 629
    Thompson D. J., et al., 1995, ApJS, 101, 259
    Thompson D. J., et al., 1996, VizieR Online Data Catalog, p. J/ApJS/101/259 Titov O., Malkin Z., 2009, A&A, 506, 1477
    Titov O., Lambert S. B., Gontier A. M., 2011, A&A, 529, A91
    Urry C. M., Padovani P., 1995, PASP, 107, 803
    Voges W., et al., 1996, IAU Circ., 6420, 2
    WISE Collaboration 2012, IV. WISE Data Processing, https://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4h.html
    Wall J. V., 1975, The Observatory, 95, 196
    Waters T., Kashi A., Proga D., Eracleous M., Barth A. J., Greene J., 2016, ApJ, 827, 53 Webb N. A., et al., 2020, A&A, 641, A136
    Webb N. A., et al., 2022, VizieR Online Data Catalog, p. IX/65
    White R. L., Becker R. H., Helfand D. J., Gregg M. D., 1997, ApJ, 475, 479
    Willott C. J., Rawlings S., Blundell K. M., Lacy M., Eales S. A., 2001, MNRAS, 322, 536 Wright A. E., Griffith M. R., Burke B. F., Ekers R. D., 1994, ApJS, 91, 111
    Wright E. L., et al., 2010, AJ, 140, 1868
    Yang G., et al., 2016, ApJ, 831, 145
    Zhang J., Liang E.-W., Zhang S.-N., Bai J. M., 2012, ApJ, 752, 157
    Zhang J., Xue Z.-W., He J.-J., Liang E.-W., Zhang S.-N., 2015, ApJ, 807, 51
    de Gasperin F., Intema H. T., Frail D. A., 2018, MNRAS, 474, 5008

    QR CODE
    :::