跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳怡方
Yi-Fang Chen
論文名稱: Comparison of Credit Risk in Coupled Diffusion Model and Merton's Model
指導教授: 孫立憲
Li-Hsien Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 75
中文關鍵詞: 信用風險違約默頓模型關聯性擴散模型系統事件
外文關鍵詞: credit risk, default, Merton's model, coupled diffusion model, systemic event
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用默頓模型的框架理論以及關聯擴散模型來分析公司的信用風險。 在到期日 T 時,如果公司的資產價值小於公司負債的帳面價值,稱作違 約。默頓模型原始的概念是在風險中立測度進行討論,利用其框架理論 於真實機率測度計算信用風險,接著也使用關聯擴散模型進行分析。根 據系統風險,我們想要了解兩模型在給定對數資產平均小於對數負債平 均下,違約機率有何變化。在參數估計上,使用最大概似估計法。發現 當公司相關性愈高時,給定對數資產平均小於對數負債平均的聯合違約 機率也愈高。


    In this paper, we use the framework of Merton's model and the coupled diffusion model to analyze the companies' credit risk. The default is defined as the market value of the firm's assets less than the book value of the firm's liabilities at maturity time $T$. The original concept of the Merton's model is discussed in risk-neutral measure. We use the framework of Merton's model and the coupled diffusion model to calculate the default probabilities in the physical measure. Base on the systemic event, we want to know what change of the joint default probabilities conditional on the mean of log-inventories less than mean of log-liabilities. In the simulation study, we use the Maximum Likelihood technique to estimate the parameters. The higher correlation, the higher joint default probabilities conditional on the systemic event.

    摘要 i Abstract ii 誌謝 iii 1 Introduction 1 2 The Merton’s model 4 2.1 Merton’sModel................................. 4 2.2 KMV-Mertonmodel .............................. 6 3 Methodology 8 3.1 The Merton’s model ........................... 8 3.2 The coupled diffusion model................... 14 4 The parameters estimation 19 4.1 The correlated Merton model .................. 19 4.2 The coupled diffusion model................... 22 5 Simulation 25 5.1 The correlated Merton model .................. 25 5.2 The coupled diffusion model................... 32 6 Empirical result 38 6.1 Data description ............................. 38 6.2 Empirical result.............................. 38 7 Conclusion 44 Reference 46 Appendices 49

    [1] Crosbie, P., Bohn, J. (2003) Modeling default risk, Moody’s KMV technical docu- ment.
    [2] Bharath, S. T., Shumway, T. (2004) Forecasting default with the KMV-Merton model. In AFA 2006 Boston Meetings Paper.
    [3] van Emmericn, C. (2006) Modeling correlation as a stochastic process. preprint, 6.
    [4] Fouque, J.P., Sum, L.H. (2013) Systemic risk illustrated. Handbook on Systemic
    Risk, 444-452.
    [5] Carmona, R., Fouque, J.P., Sum, L. H. (2013) Mean field games and systemic risk.
    Available at SSRN 2307814.
    [6] Fouque, J. P., Sircar, R., Sircar, K. (2009) Multiname and multiscale default mod-
    eling. Multiscale Modeling Simulation, 7: 1956-1978.
    [7] Fouque, J. P., Wignall, B. C., Zhou, X. (2008) Modeling correlated defaults: First passage model under stochastic volatility. Journal of Computational Finance, 11: 43.
    [8] Phillips, P. C., Yu, J. (2009) Maximum likelihood and Gaussian estimation of con- tinuous time models in finance. In Handbook of financial time series, Springer Berlin Heidelberg, 497-530.
    [9] Brewer, K. D., Feng, Y., Kwan, C. C. (2012) Geometric Brownian Motion, Option Pricing, and Simulation: Some Spreadsheet-Based Exercises in Financial Modeling Spreadsheets in Education, 5: 4.
    [10] Maller, R. A., Muller, G., Szimayer, A. (2009) Ornstein-Uhlenbeck processes and extensions. In Handbook of financial time series, Springer Berlin Heidelberg, 421-437.
    [11] Cheridito, P., Kawaguchi, H. Maejima, M. (2003) Fractional ornstein-uhlenbeck processes. Electron. J. Probab, 8: 1-14.
    [12] Jessen, C., Lando, D. (2015) Robustness of distance-to-default. Journal of Banking and Finance, 50, 493-505.
    [13] Han, C. H. (2012). Importance Sampling Estimation of Joint Default Probability under Structural-Form Models with Stochastic Correlation. In Monte Carlo and QuasiMonte Carlo Method 2010, Springer Berlin Heidelberg, 409-418.
    [14] Han, C. H., Liu, W. H., Chen, T. Y. (2014) VaR/CVaR Estimation under Stochastic Bolatility Models. International Journal of Theoretical and Applied Finance, 17: 1450009.
    [15] Hillegeist, S. A., Keating, E. K., Cram, D. P., Lundstedt, K. G. (2004) Assessing the probability of bankruptcy. Review of accounting studies, 9: 5-34.
    [16] Lucas, D. J. (1995). Default correlation and credit analysis. The Journal of Fixed Incom, 4: 76-87.
    [17] Nagpal, K., Bahar, R. (2001) Measuring default correlation. Risk, 14: 129-132.
    [18] Frey, R., McNeil, A. J., Nyfeler, M. (2001) Copulas and credit models. Risk, 10(111114.10).
    [19] De Servigny, A., Renault, O. (2002) Default correlation: empirical evidence. Standard and Poor′s.
    [20] Zieliński, T. (2013) Merton’s and KMV Models in Credit Risk Management. Studis Ekonomiczne, 127: 123-135.
    [21] Franco, J. C. G. (2003) Macimum likelihood estimation of mean reverting processes. Real Options Practice.
    [22] Chen, Y., Chu, G. (2014) Estimation of Default Risk Based on KMV Model-An Empirical Study for Chinese Real Estate Companies. Journal of Financial RIsk Management, 2014.
    [23] Valdivieso, L., Schoutens, W., Tuerlinckx, F. (2009) Macimum likelihood estimation in processes of Ornstein-Uhlenbeck type. Statistical Inference for Stochastic Processes, 12: 1-19.
    [24] Kuo, B. H. (2016) Credit Risk Illustrated under Coupled Diffusions.

    QR CODE
    :::