| 研究生: |
廖翊君 Yi-chun Liao |
|---|---|
| 論文名稱: |
適用於可見光通訊系統之實係數快速傅立葉轉換的單路徑延遲回授架構設計 Design of Real FFT SDF Architecture for Visible Light Communication |
| 指導教授: |
蔡佩芸
Pei-yun Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 可見光通訊 、實係數快速傅立葉轉換 、單路徑延遲回授架構 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可見光通訊系統(Visible Light Communication,VLC)主要是透過LED照明設備發出肉眼無法察覺的高頻率明暗閃爍之可見光,在不影響日常照明的使用下同時傳遞資料訊息。本論文使用OFDM技術來減輕符際干擾(Inter Symbol Interference,ISI)等問題,在訊號編碼上使用QPSK。本篇所模擬VLC系統的取樣頻率為200MHz,其中OFDM使用64點的FFT,OFDM symbol的長度為360ns,我們模擬不同房間大小之系統效能,其中房間大小為(7.73 m, 6.6 m, 2.8 m)之系統效能在〖SNR〗_e = 15 dB時,系統之位元錯誤率(Bit Error Rate,BER)可達到10-5至10-6。由於基頻訊號是對光的強度作調變,在時域的訊號將只會是純實數,因此使用實係數之(Real FFT,RFFT)來降低運算量。
本論文提出RFFT的單路徑延遲回授(Single-path Delay Feedback,SDF)架構,利用Hermitian symmetry的共軛對稱特性將複數FFT的多餘頻域輸出訊號予以移除,以節省運算量和硬體複雜度。並根據實複數值混和路徑型態的訊號流程圖(Signal Flow Graph,SFG)來設計,主要原因除了增加硬體的使用率之外,也是為了降低複數型態延遲單元的數量。我們針對第三級的複數乘法運算做適當的重新排程,再搭配硬體共用的方式以更有效率地使用延遲單元。所提出的硬體使用了(4 log_2N-6)個實數加法器、(log_8N-3/2)個複數乘法器和(9N/8-1)個實數延遲單元,因此相較於其他RFFT的多路徑延遲交換(Multi-path Delay Commutator,MDC)架構以及CFFT的SDF架構,我們所使用的複數乘法器數目也相對的比較少。
Visible light communication (VLC) is an alternative of wireless communication and it transmits signals by LEDs illumination. In this paper, we modulate signals by OFDM technology to mitigate the inter symbol interference (ISI) caused by multipath effect and encode transmitted signals by QPSK. The sampling frequency is 200 MHz and the size of FFT and CP period is 64 point and 8 samples. Hence, the OFDM symbol period is 360 ns in the VLC system that we simulate. We simulate the VLC system in different room sizes. In the simulation of special room(7.73 m, 6.6 m, 2.8 m), a bit error rate (BER) of 10-5 to 10-6 is achieved under the 〖SNR〗_e = 15 dB. The OFDM baseband signal is used to modulate the LED intensity, and therefore the signals on the time domain will be only real value. Hence, we can use the real FFT (RFFT) to reduce operation.
This paper presents the single-path delay feedback (SDF) architecture for the FFT with real input samples. We take the advantage of Hermitian symmetry to save the computation and hardware complexity. The proposed N-point real FFT SDF architecture is based on the hybrid data-path SFG which is used to increase the hardware utilization and to reduce latency. With the proper scheduling in the stage 3 of the RFFT SDF architecture, we can use delay element efficiently by hardware sharing. Therefore, the proposed SDF architecture only requires (4 log_2N-6) real adders, (log_8N-3/2) complex multipliers and (9N/8-1) real delay elements. The hardware complexity is fewer than several real FFT multi-path delay commutator (MDC) architecture and complex FFT SDF architecture.
[1] Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), Submission Title: Visible Light Communication: Tutorial, Mar. 9 2008, doc.: IEEE 802.15 <08/0114-02>
[2] “世界領先 孫慶成教授發表新LED光色封裝技術,” 國立中央大學
[Online] Available: http://pine.cc.ncu.edu.tw/~ncutop1/?post_type=featured&p=1302 [Accessed: June 20, 2014]
[3] 蘇忠傑, “白光LED封裝技術,” 國立臺灣科技大學
[Online] Available: http://cece2.ntust.edu.tw/ezcatfiles/cece2/homepage/14/LED.htm [Accessed: June 20, 2014]
[4] O'brien, D., Zeng, L., Hoa Le-Minh, Faulkner G., Walewski J.W. and Randel S., “Visible Light Communications: challenges and possibilities,” Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on, pp. 1-5, Cannes, Sep. 2008
[5] 蘇緣峻, “利用光感測器陣列實現可見光通訊之干擾消除技術,” 國立臺北科技大學, July 2011
[6] Afgani, M.Z., Haas H., Elgala H. and Knipp D., “Visible Light Communication Using OFDM,” IEEE Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006. 2nd International Conference on, Barcelona, March 2006
[7] Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), Submission Title: VLC Dimming Proposal, Sep. 20 2009, doc.: IEEE 802.15- 15-09-0641-00-0007
[8] Kwonhyung Lee and Hyuncheol Park, “Modulation for Visible Light Communications With Dimming Control,” IEEE Photonics Technology Letters, vol. 23, No. 16, Aug. 15 2011
[9] Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), Title: Samsung, Intel, ETRI and CSUS merged proposal text, Nov. 2009, doc.: IEEE P802.15-09-0786-01-0007
[10] Elgala H., Mesleh R. and Haas H., “Indoor Broadcasting via White LEDs and OFDM,” IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, pp. 1127-1134, Aug. 2009
[11] Tanaka Y., Komine T., Haruyam, S. and Nakagawa M., “Indoor Visible Communication utilizing Plural White LEDs as Lighting,” Personal, Indoor and Mobile Radio Communications, 2001 12th IEEE International Symposium on, Vol. 2, Sep. 2001
[12] Dayou Qian, Cvijetic N., Junqiang Hu and Ting Wang, “Optical OFDM Transmission in Metro/Access networks,” Optical Fiber Communication - incudes post deadline papers, 2009. OFC 2009. Conference on, IEEE, pp. 1-3, Mar. 2009
[13] Schmidt B., Lowery A.J. and Armstrong J., “Experimental Demonstrations of Electronic Dispersion Compensation for Long-Haul Transmission Using Direct-Detection Optical OFDM,” Journal of Lightwave Technology, Vol. 26, No. 1, pp. 196-203, Jan. 2008
[14] Kanonakis K., Tomkos I., Krimmel H., Schaich F., Lange C. and others, “An OFDMA-based Optical Access Network Architecture Exhibiting Ultra-High Capacity and Wireline-Wireless Convergence,” IEEE Communications Magazine, Vol. 50, No. 8, pp. 71-78, Aug. 2012
[15] Xie Zhang, Kaiyun Cui, Minyu Yao, Hongming Zhang and Zhengyuan Xu, “Experimental Characterization of Indoor Visible Light Communication Channels,” Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012 8th International Symposium on, IEEE, pp. 1-5, July 2012
[16] Komine T. and Nakagawa, M., “Fundamental Analysis for Visible-Light Communication System using LED Lights,” IEEE Transaction on Consumer Electronics, Vol. 50, No. 1, pp. 100-107, Feb. 2004
[17] Lubin Zeng, O'Brien D., Hoa Le-Minh, Kyungwoo Lee, Daekwang Jung and Yunje Oh, “Improvement of Date Rate by using Equalization in an Indoor Visible Light Communication System,” Circuits and Systems for Communications, 2008. ICCSC 2008. 4th IEEE International Conference on, pp.678-682, May. 2008
[18] J. B. Carruthers and S. M. Carroll, “Statistical impulse response models for indoor optical wireless channels,” International Journal of Communication Systems - Special Issue on Indoor Optical Wireless Communication Systems and Networks, Vol. 18, No. 3, pp. 267-284, April 2005
[19] Elgala H., Mesleh R., Haas, H. and Pricope B., “OFDM Visible Light Wireless Communication Based on White LEDs,” Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th, pp. 2185-2189, April 2007
[20] Saha N., Mondal R.K., Nam Tuan Le and Yeong Min Jang, “Mitigation of Interference Using OFDM in Visible Light Communication,” 2012 International Conference on ICT Convergence (ICTC), IEEE, pp. 159-162, Oct. 2012
[21] Komine T., Lee J.H., Haruyama S. and Nakagawa M., “Adaptive Equalization System for Visible Light Wireless Communication Utilizing Multiple White LED Lighting Equipment,” IEEE Transactions on Wireless Communications, Vol. 8, No. 6, pp. 2892-2900, June 2009
[22] “無線通道模型概論,” 國立中正大學 [Online] Available: http://web.ee.ccu.edu.tw/~wl/ofdm/class/class%20pdf/Channel%20model.pdf [Accessed: June 20, 2014]
[23] [Online] Available: http://viplab.cs.nctu.edu.tw/course/VLSI_DSP2010_Fall/VLSIDSP_CHAP6.pdf
[Accessed: June 20, 2014]
[24] Garrido M., Parhi K.K. and Grajal J., “A Pipelined FFT Architecture for Real-Valued Signals,” IEEE Transactions on Circuits and Systems – I: Regular Papers, Vol. 56, No. 12, pp. 2634-2643, Dec. 2009
[25] Ayinala M. and Parhi K.K., “FFT architectures for real-valued signals based on radix-23 and radix-24 algorithms,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 9, pp. 2422-2430, Feb. 2013
[26] Salehi S.A., Amirfattahi R. and Parhi K.K., “Pipelined Architectures for Real-Valued FFT and Hermitian-Symmetric IFFT with Real Datapaths,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 60, No. 8, pp. 507-511, Aug. 2013
[27] Ayinala M., Brown M. and Parhi K.K., “Pipelined Parallel FFT Architectures via Folding Transformation,” IEEE Transactions on VLSI Systems, Vol. 20, No. 6, pp. 1068-1081, June 2012.
[28] T. D. Chiueh and Pei-Yun Tsai, “OFDM Baseband Receiver Design for Wireless Communications,” John Wiley, 2007.(ISBN: 978-0-470-82234-0)
[29] Elgala H., Mesleh, R. and Haas, H., “Practical Considerations for Indoor Wireless Optical System Implementation using OFDM,” IEEE Telecommunications, pp. 25-29, June 2009