跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂靜芳
Jing-Fang Lu
論文名稱: 由網站行為歷程以貝式學習建立學習者模式之引導系統
指導教授: 陳國棟
Gwo-Dong Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 59
中文關鍵詞: 學習者模式貝式學習
外文關鍵詞: Bayesian belief Network, Student model
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於網際網路之盛行,許多教師在網路上建立學習系統,使得學生可以在任何地點與時間上課。網際網路的另一個優點是學生在網路上的學習歷程可以被記錄下來,因此可以用過去學生的學習歷程來作為觀察與預測學生成就的依據。然而這個工作要處理到許多的網站上站記錄,要觀察到他們與學習成就之間的關係是相當費時費力的。老師費力批改學生作品的結果可以用來表現學生實際的學習成就,進而幫助學生瞭解自己的學習狀況及幫助老師觀察學生,然而老師要自己去整理及處理這些資料也是相當費時的。
    在這篇論文中,我們著力於建構學習者模式中的兩個模組,(1) 透過建立Bayesian Belief Network的工具,將學生在網路學習環境中的學習活動及學習成果等學習變數以Bayesian Belief Network的形式表示而成的預測模型(學習學習狀況預測模型及課程概念因果關係模型),(2) 由老師批閱學生作品後的結果以Bayesian 推論方法來建立學生課程概念能力成效資料庫。
    本論文所建構的學習者模式可以做到(1)幫助學生了解自己在班上所處的地位,(2)促進學生之間的知識交換,(3)幫助老師從學生的學習活動中即時預測學生的學習狀況,若發現學習成果可能不佳的學生,老師可即早給予輔助。(4)幫助老師觀察學生學習狀況,包含觀察和預測學生整體的學習狀況及找出在不同學習情境下表現情況不一致的學生等等,以做為老師輔助學生依據及教學策略擬定的參考。


    目錄 圖形索引 表格索引 第 1 章 緒論 1-1 研究背景與動機 1-2 研究目標與問題分析 1-3 相關研究 1-4 作法 1-5 論文架構 第 2 章 相關技術 2-1 BAYESIAN BELIEF NETWORK 2-1-1 Bayesian Belief Network簡介 2-1-2 Bayesian Belief Network的用途 2-1-3 使用Bayesian Belief Network的原因 2-1-4 操作Bayesian Network的工具 2-2 相關度分析(CORRELATION ANALYSIS) 2-3 關聯規則(ASSOCIATION RULE) 第 3 章 學習者模式的建立 3-1 學習者模式及系統架構圖 3-2 推測模型 3-2-1 資料的收集與整理 3-2-2 連續資料的離散化 3-2-3 建立BBN(Bayesian Belief Network)之結構 3-2-4 學習BBN之前端機率及條件機率 3-2-5 成果範例 3-3 學生課程概念能力資料庫 3-3-1 課程概念的結構 3-3-2 教學目標 3-3-3 建立課程概念之BBN 3-3-4 建立學生課程概念資料庫之演算法 第 4 章 學習導引系統 4-1 學習狀況預測系統 4-2 學習狀況回報系統 第 5 章 實驗結果與討論 5-1 測試資料來源 5-2 預測模型 5-3 不同情境下的表現狀況 第 6 章 結論 參考文獻 附錄一 附錄二

    [1]Arter, J. A., V. Spandel and R. Culham, Portfolios For Assessment And Instruction, ERIC Digest: EDO-CG-95-10, 1995
    [2]BKD(Bayesian Knowledge Discoverer) develop by Knowledge Media Institute of The Open University at http://kmi.open.ac.uk/projects/bkd
    [3]Burton, R. B., Diagnosing bugs in a simple procedural skill. In D.Sleeman & J. S. Brown(Eds.), Intelligent Tutoring Systems, London: Academic Press, 1982.
    [4]Charniak, E., Bayesian networks without tears. AI Magazine, Vol. 12, No. 4, pp. 50-63, 1991.
    [5]Chi, M.T.H, R. Glaser and E. Rees, Expertise in problem solving. In R.J. Sternberg(Ed.) Advances in the Psychology of Human Intelligence, Vol. 1, 1982.
    [6]Conati, C., A. Gertner, K. VanLehn, and M. Druzdzel. On-Line Student Modeling for Coached Problem Solving Using Bayesian Networks. In proceedings of the 6th International Conference on User Modeling, pp. 231-242, 1997.
    [7]Cooper, G. F., Current research directions in the development of expert systems based on belief networks. Applied Stochastic Models and Data Analysis, vol. 5, No. 1, pp. 39-52, 1989.
    [8]Fayyad, U.M. and K.B. Irani., Multiinterval discretization of continuous- valued attributes for classification learning. In proceedings of the 13th International Joint Conference on Artificial Intelligence, pp.1022-1027, 1993.
    [9]Fletcher, J.D., Modeling of learner in computer-based instruction, Journal of Computer-Based Instruction, vol. 1, pp. 118-126, 1975.
    [10]Gürer, D. W., M. desJardins, and M. Schlager. Representing a Student''s Learning States and Transitions. In the 1995 AAAI Spring Symposium on Representing Mental States and Mechanisms, Stanford, CA; published as a AAAI technical report.
    [11]GeNIE develop by Decision Systems Laboratory, University of Pittsburgh. at http://www2.sis.pitt.edu/~genie/
    [12]Holte, R.C., Very simple classification rules perform well on most commonly used dataset. Machine Learning, Vol. 11, pp. 63-91, 1993.
    [13]Jensen, F.V., An Introduction to Bayesian Networks, Springer Verlag, 1996
    [14]Mitrovic, A., S. Djordjevic-Kajan, L. Stoimenov, INSTRUCT: Modeling Students by Asking Questions. In User Modeling and User-Adapted Interaction, Vol. 6, No. 4, pp. 273-302, 1996.
    [15]Moore, A. W. and M.S. Lee, Efficient Algorithms for Minimizing Cross Validation Error, In Proceedings of the 11th International Conference on Machine Learning, pp. 190-198, 1994.
    [16]MSBN(Microsoft Belief Network Tools) develop by Microsoft at http://www.research.microsoft.com/research/dtg/msbn/
    [17]Neapolitan, R. E., Probabilistic Reasoning in Expert Systems, In John Wiley & Sons(Eds.), Theory and Algorithms, New York, 1990.
    [18]Netica develop by Norsys Software Corp. at http://www.norsys.com/
    [19]Onisko, A., M. J. Druzdzel and H. Wasyluk, A Probabilistic Causal Model for Diagnosis of Liver Disorders, In Proceedings of the 7th Symposium on Intelligent Information Systems, pp. 379-387, 1998.
    [20]Pearl, J., Probabilistic Reasoning in Intelligent System: Networks of Plausible Inference, Morgan-Kaufmann Publishers, Inc., San Mateo, 1988
    [21]Perkowitz, M., O. Etzioni: Adaptive Web Sites: an AI Challenge, In proceeding of the 17th International Joint Conferences on Artificial Intelligence, Vol. 1, pp. 16-23, 1997.
    [22]Spector, P., An Introduction to S and S-plus, Duxbury Press, 1994.
    [23]Tekinerdogan, B, Design of a Reflective Tutoring System Shell. Technical rreport:ITSSEL-95-4 in Memorandum of Dep. Of Computer Science, University of Twente, 1995
    [24]TopClass develop by WBT Systems at http://www.wbtsystems.com/
    [25]VanLehn, K., Student modeling. In M. Polson & Richardson(Eds), Foundations of Intelligent Tutoring Systems, Hillsdale, 1988.
    [26]Virtural-U developed by Simon Fraser University at http://www.vlei.com
    [27]WebCT: World Wide Web Course Tools at http://www.webct.com

    QR CODE
    :::