| 研究生: |
謝舒菁 Shu-Ching Hsieh |
|---|---|
| 論文名稱: |
同軸式體積全像儲存系統之研究與改良 The study of collinear holographic storage system |
| 指導教授: |
孫慶成
Ching-Cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 全像儲存 、全像 |
| 外文關鍵詞: | holography data storage, holography |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們以相位疊加法為基礎,建立出一個同軸式體積全像儲存系統的理論模型,並且已求得其在真實空間中的近軸近似解。根據理論計算,證實本模型確實可掌握其具有微小的位移容忍度以及參考光分布對於繞射光分布的影響。此外,其他各項參數對系統特性之影響,包括參考光圖形的對稱性、紀錄介質之厚度、訊號光位置差異及加入相位調制的改良等皆進行探討。最後我們分析不同狀況下之系統的誤碼率及訊雜比,以做為光儲存效能之評估。
In this thesis, we build up a new theoretical model for the collinear holographic storage system based on VOHIL model. Besides, we obtain a formula under the paraxial condition to describe diffraction behavior of the system. According to our simulation, we can figure out the detailed diffraction properties of the system, including large shift selectivity and the effect on the diffraction pattern by the reference pattern. In addition, the diffraction characteristics are studied with several important parameters, including the spatial symmetry of the reference pattern, the thickness of the recording medium, the position-dependence of the signal and phase modulation. Finally, we analyze the performance of the storage system by calculating the bit error rate and signal-to-noise ratio.
[1] J. W. Goodman, Introduction to Fourier Optics, 2nd eds. (McGraw-Hill, New York, 2002).
[2] H. Coufal, and G.W. Burr, “Optical data storage,” Chapter 26, International Trends in Applied Optics, ed., A. Guenther, SPIE, 2002.
[3] G. W. Burr, “Holographic storage,” Encyclopedia of Optical Engineering, ed., R. B. Johnson and R. G. Driggers, Marcel Dekker, New York, 2003.
[4] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, New York, 2000).
[5] Hesselink, L., Orlov, S.S., Bashaw, M.C. “Holographic data storage systems,” inProc. of IEEE 29 1231 – 1280 (2004).
[6] D. Ganor, “A new Microscopic principle,” Nature, 161, 777 (1948).
[7] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt., 2, 393-400 (1963).
[8] B. L. Booth, "Photopolymer material for holography," Appl. Opt.14, 593-601 (1975).
[9] A. Pu and D. Psaltis, "High-density recording in photopolymer-based holographicthree-dimensional disks," Appl. Opt. 35, 2389- 2398 (1996).
[10] K. Curtis, A. Pu, and D. Psaltis, "Method for holographic storage using peristrophic multiplexing," Opt. Lett. 19, 993-994 (1994).
[11] S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-Transfer-Rate High-Capacity Holographic Disk Data-Storage System," Appl. Opt. 43, 4902-4914 (2004).
[12] H. Horimai, and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt., 45, 910-914 (2006).
[13] H. Horimai and J. Li, "A novel collinear optical setup for holographic data storage system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 297-303 (2004).
[14] H. Horimai, X. Tan, and J. Li, "Collinear holography," Appl. Opt. 44, 2575-2579 (2005).
[15] H. Horimai, and Y. Aoki, “Holographic Versatile Disc (HVD),” in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society of America, 2005), paper ThE6.
[16] H. Horimai, and X. Tan, “Advanced Collinear Holography,” Opt. Rev. 12, 90-92 (2005).
[17] H. Horimai, and X. Tan, “Holographic Versatile Disc System,” in SPIE Symposium on Optics & Photonics 2005, Organic Holographic Materials and Applications Ⅲ (San Diego, California, USA, 2005), Klaus Meerholz eds., Proceedings of SPIE 5939, 1-9 (2005).
[18] H. Horimai and X. Tank, “Read-only holographic versatile disc system using laser Read-only holographic versatile disc system using laser diode,” Proc. of SPIE 6252, 62520Z-1- 62520Z-5 (2006).
[19] T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, "Analysis of a collinear holographic storage system: introduction of pixel spread function," Opt. Lett. 31, 1208-1210 (2006).
[20] T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai," Calculation of the Pixel Spread Function with a Simple Numerical Model for the Collinear Holographic Storage System," in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society of America, 2005), paper PD6.
[21] T. Shimura, Y. Ashizuka, M. Terada, R. Fujimura, and K. Kuroda, " What Limits the Storage Density of the Collinear Holographic Memory?," in Optical Data Storage, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuD1.
[22] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM journal of research and development, 44, 341 (2000).
[23] G. Barbastathis and D. J. Brady, “Multidimensional Tomographic Imaging Using Volume Holography,” Proc. of IEEE 87, 2098 – 2120 (1999).
[24] G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter, ” Opt. Lett. 24, 811-813 (1999).
[25] 吳啟守,“光折變體積全像術之波長多工於高密度分波多工器之應用,”中原大學應用物理研究所碩士論文,中華民國九十年。
[26] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive Coupler for Fault-Tolerant Coupling,” IEEE Photon. Techno. Lett. 7, 789-791 (1995).
[27] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive spatial mode converter for multimode-to-single-mode fiber-optic coupling,” Opt. Lett. 20, 1125-1127 (1995).
[28] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, "Holographic data storage in three-dimensional media," Appl. Opt. 5, 1303-1311 (1966).
[29] G. W. Burr, F. H. Mok, and D. Psalts, “Angle and space multiplexed storage using the 90∘geometry,” Opt. Commun., 117, 49-55 (1995).
[30] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-1473 (1992).
[31] S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tnable diode-laser,” Opt. Commun, 101, 317-321 (1993).
[32] G. Barbastathis, M. Levene, and D. Psaltis, "Shift multiplexing with spherical reference waves," Appl. Opt. 35, 2403- (1996).
[33] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528-1529 (2003).
[34] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[35] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[36] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
[37] C. C. Sun and W. C. Su, “Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms,” Appl. Opt. 40, 1253-1260 (2001).
[38] H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
[39] A. Yariv, and P. Yeh, Optical Waves in Crystals, (John Wiley & Sons, New York, 1984).
[40] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
[41] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, “Volume Diffraction Caculations Using the k-sphere Formulation”, in Holographic data storage, (Springer, New York, 2000), pp 42-47.
[42] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論文, 中華民國九十年。
[43] 陳政憲,無畫素串音之體積全像光儲存碟片之研究,國立中央大學光電所碩士論文,中華民國九十四年。
[44] 蔡孟芬,同軸式體積全像光碟儲存系統之研究,國立中央大學光電所碩士論文,中華民國九十五年。
[45] Robert J. Collier, Christoph B. Burckhardt, Lawrence H Lin, Optical Holography, (Murray Hill, New Jersey, 1983).
[46] Members of the Technical Staff, Bell Laboratories, Transmission Systems for Communications (Bell Laboratories, Holmdel, N. J., 1971), Chap. 30, p.726.