跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊朝棟
Chau-Dung Yang
論文名稱: 在CDMA細胞組成的行動電話系統架構下使用中心化功率控制
Performance of Centralized Power Control Algorithm in CDMA Cellular Mobile Systems
指導教授: 蔡木金
Mu-King Tsay
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 63
中文關鍵詞: 分碼多工中心化功率控制演算法
外文關鍵詞: CDMA, Centralized Power Contol Algorithm
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有效功率控制是相當重要的在高容量細胞組成的無線系統架構下,而最佳化功率控制系統 (OPCS) 很顯然的它可以使中斷機率最小。本篇論文在研究於CDMA (Code Division Multiple Access) 細胞組成的行電話系統架構下,使用五種中心化功率控制演算法 (Centralized Power Control Algorithm) 其為,SORA (Stepwise Optimal Removal Algorithm),SMIRA (Stepwise Maximum Interference Removal algorithm),SMRIRA (Stepwise Maximum Receiver Interference Removal Algorithm),SMTIRA (Stepwise Maximum Transmitter Interference Removal Algorithm),SRA (Stepwise Removal Algorithm),結合兩類鏈路增益 (link gain),一為經驗上的偵測模型 (Empirical Predict Model),一為統計上的Lognormal Fading,進行上鏈路徑 (uplink) 及下鏈路徑 (downlink) 各別獨立效能分析,在移除 (removal) 行動電話機 (Mobile) / 基地台 (Base Station) 相同數量前提下,經過多次演算所產生平均訊號-干擾比 (SIR mean) 及在同臨限準位 (threshold) 下之中斷機率 (Outage Probability),我們由結果顯示使用SORA 演算法所得到的SIR mean (uplink 及 downlink 有相同SIR) 比其它演算法來的大,換言之中斷機率比其他演算法來的小,但相對的其計算複雜度 (隨著使用者數目增加) 亦比其他四種演算法來的高。
    因此為了降低計算的複雜度,提高SIR接近SORA演算法,本篇論文針對其他四種演算法 (SMIRA、SMRIRA、SMTIRA、SRA),提出上鏈路徑 (uplink) 及下鏈路徑 (downlink) 結合演算法進行效能分析,結果顯示使用此演算法所產生SIR mean 接進SORA演算法所顯示的結果,在這邊一併提出來進行探討。


    Efficient power control is of great important in the design of high-capacity cellular radio system. Optimum Power Control Scheme (OPCS), in the sense that it minimizes the outage probability. This thesis research in CDMA (Code Division Multiple Access) cellular mobile system, using five Centralized Power Control Algorithms (CPCA), that are SORA (Stepwise Optimal Removal Algorithm), SMIRA (Stepwise Maximum Interference Removal algorithm), SMRIRA (Stepwise Maximum Receiver Interference Removal Algorithm), SMTIRA (Stepwise Maximum Transmitter Interference Removal Algorithm), SRA (Stepwise Removal Algorithm) and combine two kinds of link gain which are empirical predict model and statistical lognormal fading to analyze the performance of uplink and downlink individually. Base on the premise that removal mobile or base station has the same amount. Calculation by many times get the SIR mean and the outage probability under same threshold, we show by result the SORA (uplink and downlink have same SIR) can get greater SIR mean than other algorithms; in another word, the outage probability is smaller than other algorithms. But the calculation is complicated than other (by user’s increasing).
    In order to reduce calculation’s complex and improve SIR close to SORA. Throughout this thesis, focus the other four algorithms (SMIRA, SMRIRA, SMTIRA, SRA) by combining up/down to go on the performance analysis. The conclusion is using the above-mentioned algorithms that will have the SIR mean close to the SORA. We will keep discussing.

    AbstractⅠ ContentⅡ List of FiguresⅣ List of TablesⅥ Chapter 1 Introduction 1 1.1 Research Background 1 1.1.1 CDMA1 1.1.2 Power Control2 1.1.3 Spread Techniques In Modulation3 1.2 Research Motivation5 Chapter 2 System Model6 2.1 Uplink System Model6 2.2 Downlink System Model10 Chapter 3 Centralized Power Control Algorithm 13 3.1 What Is Centralized Power Control Algorithm13 3.2 Centralized Power Control Algorithm For Uplink System 15 3.2.1 Stepwise Removal Algorithm (SRA)15 3.2.2 Stepwise Maximum Interference Removal Algorithm (SMIRA)16 3.2.3 Stepwise Maximum Received Interference Removal Algorithm (SMRIRA)17 3.2.4 Stepwise Maximum Transmitted Interference Removal Algorithm (SMTIRA)18 3.2.5 Stepwise Optimal Removal Algorithm (SORA) 18 3.3 Centralized Power Control Algorithm For Downlink System 19 3.3.1 Stepwise Removal Algorithm (SRA)19 3.3.2 Stepwise Maximum Interference Removal Algorithm (SMIRA) 20 3.3.3 Stepwise Maximum Received Interference Removal Algorithm (SMRIRA) 21 3.3.4 Stepwise Maximum Transmitted Interference Removal Algorithm (SMTIRA)22 3.3.5 Stepwise Optimal Removal Algorithm (SORA) 23 3.4 Centralized Power Control Algorithm For Combining Uplink And Downlink System 24 3.4.1 Stepwise Removal Algorithm (SRA)24 3.4.2 Stepwise Maximum Interference Removal Algorithm (SMIRA)25 3.4.3 Stepwise Maximum Received Interference Removal Algorithm (SMRIRA)27 3.4.4 Stepwise Maximum Transmitted Interference Removal Algorithm (SMTIRA)28 Chapter 4 Performance Analysis29 4.1 Preface29 4.2 Numerical Result With Empirical Predict Model 31 4.3 Numerical Result With Lognormal Fading53 Chapter 5 Conclusions61 Bibliography62

    [1] Qiang. Wu, “Performance of optimum transmitter power
    control in CDMA cellular mobile systems,” IEEE Trans. Veh.
    Technol., vol. 48, pp. 571-575, March. 1999.
    [2] Jens. Zander, “Performance of optimum transmitter power
    control in cellular radio systems,” IEEE Trans. Veh.
    Technol., vol. 41. pp. 57-62, Feb. 1992.
    [3] Jens. Zander and Magnus. Frodigh, “Comment on
    ‘Performance of optimum transmitter power control in
    cellular radio systems,”’ IEEE Trans. Veh. Technol., vol.
    43. pp. 636, Aug. 1994.
    [4] J. C. Lin, T. H. Lee, and Y. T. Su, “Power control
    algorithm for cellular radio systems,” Electron. Lett.,
    vol. 30. Feb. 1994.
    [5] T. H. Lee, J. C. Lin. and Y. T. Su, “Downlink power
    control algorithms for cellular radio systems,” IEEE
    Trans. Veh. Technol., vol. 44. Feb. 1995.
    [6] S. Ariyavisitakul and L. F. Cheng, “Signal and
    interference statistics of a CDMA system with feedback
    power control,” IEEE Trans. Commun., vol. 41. Nov. 1993.
    [7] S. Grandhi, R. Vijayan, D. J. Goodman, and J. Zander,
    “Centralized power control in cellular radio systems,”
    IEEE Trans. Veh. Technol., vol. 42. Nov. 1993.
    [8] S. Ariyavisitakul. “Signal and interference statistics of
    a CDMA system with feedback power control - Part II,” IEEE
    Trans. Commun., vol. 42. Feb/Mar/Apr. 1994.
    [9] Masaharu. Hata, “Empirical formula for propagation loss in
    land mobile radio services,” IEEE Trans. Veh. Technol.,
    vol. vt-29. no. 3. August. 1980.
    [10]William C. Y. LEE, “Elements of cellular mobile radio
    systems,” IEEE Trans. Veh. Technol., vol. vt-35. no. 2.
    May. 1986.
    [11]William C. Y. Lee, “Mobile communications design
    fundamentals,” 2nd ed. 1993.
    [12]Ahmad. Jalali and Paul. Mermelstein, “Effect of diversity,
    power control, and bandwidth on the capacity of
    microcellular CDMA systems,” IEEE Journal On Selected
    Areas In Communications., vol. 12. Jun. 1994.
    [13]J. D. Parsons, “The mobile radio propagation channel,”
    1992.
    [14]George. L. Schrenk, Neal H. Shepherd and Floyd D. Shipley,
    “A diffraction based theoretical model for predicting UHF
    path loss,” IEEE Trans. Veh. Technol., vol. 37. no. 1.
    Feb. 1980.
    [15]Gilles. Y. Delisle, Jean-Paul Lefevre, Michel Lecours and
    Jean-Yves Chouinard, “Propagation loss prediction: A
    comparative study with application to the mobile radio
    channel,” IEEE Trans. Veh. Technol., vol. vt-34. no. 2.
    May. 1985.

    QR CODE
    :::