跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余威論
Wei-lun Yu
論文名稱: 速度-位移相關摩擦係數與巨型山崩運動特性
Velocity-displacement dependent friction coefficient and the kinematics of giant landslide
指導教授: 董家鈞
Jia-jyun Dong
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
畢業學年度: 99
語文別: 中文
論文頁數: 116
中文關鍵詞: 高速旋剪試驗巨型山崩運動特性摩擦係數
外文關鍵詞: high velocity rotary-shear test, giant landslide, kinematic, friction coefficient
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瞭解滑動面摩擦特性為巨型山崩研究重要課題。本文以1999年草嶺山崩與2009年小林獻肚山山崩為研究對象,利用草嶺山崩高速旋剪試驗建立之速度-位移相關摩擦係數,本研究顯示可透過剛性塊體法分析山崩塊體可能的運移型態。因集集地震期間,臨近草嶺山崩區之強震站完整記錄到草嶺地區地表震動歷程以及山崩塊體可能的撞擊訊號,加上草嶺山崩生還者亦親述滑動與撞擊的過程,本研究得以由草嶺山崩滑動面附近之材料旋剪試驗結果,迴歸建立速度-位移相關摩擦律,引入Newmark位移法,以計算滑動塊體滑動加速度、速度、位移與摩擦係數隨時間之變化,並與地震測站紀錄以及山崩生還者之口述資料進行比較,分析結果證實根據高速旋剪試驗獲得之摩擦律,搭配剛性塊體位移法,可還原塊體滑動的運移過程。高速滑動之塊體於撞擊前之動能高達4.8E+14 J,而摩擦損失之能量約佔位能之三分之一,其他二分之一則轉化為動能。故本研究藉小林獻肚山山崩旋剪試驗樣品,進一步透過微組構觀察,檢視巨型山崩塊體滑移時的摩擦弱化機制,可發現山崩滑動面的弱化機制與其間所發展的剪動裂隙,確實是影響巨型山崩摩擦弱化的機制之一。總攬兩案例山崩滑動面附近取得樣本之高速旋剪試驗結果顯示,經快速、長距的剪動後,摩擦數弱化趨勢可清楚說明巨型山崩高速滑動及遠距離位移的運移機制。


    To understand the characteristic of friction on sliding surface is one of the most important issues of giant landslide. The Tsaoling landslide occurred in 1999 and the Siaolin landslide occurred in 1999 are major objects in this study. It can be analyzed the movement course of landslide mass relative to the behavior of frictional mechanism when we use the high velocity rotary-shear test to construct the velocity-displacement dependent friction. There are complete records from the neighbor strong-earthquake station of surface vibration at the Tsaoling area and the possible impact signal from landslide mass during the Chi-Chi earthquake. And there are also the rich information that include the process of sliding and impacting from survivor in addition; hence, we collected the original samples near the sliding surface, and used the experimental results made by high velocity rotary-shear frictional testing apparatus to fit and construct the velocity-displacement dependant friction law, then, we introduced the law into the Newmark sliding block analysis to calculate variation of the mass in sliding acceleration, velocity, displacement and the friction coefficient with course. However, to compare with the records near the strong-earthquake station and the critical verifiable data from survivor, and it verify that the results of combining the friction law constructed by high velocity rotary-shear test and the displacement analysis with rigid body can reconstruct the course of sliding. The study demonstrates the friction coefficient of sliding surface obtains from high velocity rotary-shear test has obvious phenomenon of weakening; moreover, the kinetic energy achieves 4.8E+14 J before the impact, and the loss of energy from friction is the half of kinetic energy. In view of the relationship between the slip surface and the mass movement, we analyze the experimental results in Siaolin case; moreover, to observe the microstructure of the samples that have been done after the high velocity rotary-shear test, and trying to survey the mechanism of frictional weakening while the mass of giant landslide was sliding. Get an overview of the results from two cases; it appears that the phenomena of frictional weakening observed from the result of high velocity rotary-shear test can explain the mechanism for movement of the high velocity slip and large displacement clearly.

    摘要 i ABSTRACT ii 序 iv 目錄 v 圖目錄 ix 表目錄 xiii 一、 緒論 1 1–1 研究動機與目的 1 1–2 研究架構 3 1–3 論文內文概述 4 二、 文獻回顧 6 2–1 研究案例介紹 6 2–1–1 草嶺山崩概述 6 2–1–2 小林村獻肚山山崩概述 9 2–2 Newmark位移分析法 12 2–3 滑動面速度-位移相關摩擦律與山崩運移機制 13 三、 研究方法 18 3–1 研究設備 18 3–1–1 高速旋剪試驗儀 18 3–1–2 實驗試體需求與製備方法 19 3–2 實驗樣本 22 3–2–1 草嶺山崩案例樣本 22 3–2–2 小林村獻肚山山崩案例樣本 23 3–3 樣本基本特性試驗 24 3–3–1 樣本粒徑及物性分析 24 3–3–2 X光粉末繞射分析 26 3–3–3 掃描式電子顯微鏡(SEM) 27 3–4 旋剪試驗之實驗參數 28 四、 研究結果 31 4–1 小林案例 31 4–1–1 樣本礦物組成與物性分析結果 31 4–1–2 速度-位移相關摩擦律迴歸 34 4–1–3 旋剪試驗微觀構造觀察 38 4–2 草嶺案例 39 4–2–1 樣本礦物組成 39 4–2–2 速度-位移相關摩擦試驗結果及摩擦律之建立 39 4–2–3 旋剪試驗微觀構造觀察 47 4–2–4 草嶺山崩滑動塊體運動歷程分析 49 五、 綜合討論 58 5–1 山崩滑動面材料之摩擦特性 58 5–1–1 集集地震之草嶺山崩案例 59 5–1–2 小林獻肚山山崩案例 59 5–1–3 摩擦構造中的剪動微裂隙發展 61 5–2 實驗參數變異性對旋剪試驗結果之影響 65 5–2–1 剪動支持圍岩(host rock)之種類 65 5–2–2 樣品含水量 66 5–2–3 樣品材料 68 5–3 草嶺案例塊體運動特性與滑動面摩擦特性 70 5–3–1 塊體運動能量變化 70 5–3–2 重現部分草嶺案例旋剪試驗 70 六、 結論與建議 74 6–1 結論 74 6–2 建議 76 參考文獻 77 附錄1 84 附錄2 88 附錄3 92 附錄4 94 附錄5 95 附錄6 96 附錄7 98

    〔1〕Hoek, E., Carranza-Torres, C., Corkum, B., “Hoek-Brown criterion –2002 edition,” Proc. NARMS-TAC Conference, 1, pp. 267-273, 2002.
    〔2〕Chen, T. C., Lin, M. L., Hung, J. J., “Pseudostatic analysis of Tsao-Ling rockslide caused by Chi-Chi earthquake,” Engineering Geology, Vol.71, pp. 31-47, 2003.
    〔3〕Kuo, C. Y., Tai, Y. C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R. F., Chang, K. J., “Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography,” Engineering Geology, Vol. 104, pp. 181-189, 2009.
    〔4〕Tang, C. L., Hu, J. C., Lin, M. L., Angelier, J., Lu, C. Y., Chan, Y. C., Chu, H. T., “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation,” Engineering Geology, Vol.106, pp. 1-19, 2009.
    〔5〕Chen, T. C., Lin, M. L., Hung, J. J., “Pseudostatic analysis of Tsao-Ling rockslide caused by Chi-Chi earthquake,” Engineering Geology, 71, pp. 31-47, 2003.
    〔6〕Chigira, M., Wang, W. N., Furuya, T., Kamei, T., “Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan,” Engineering Geology, Vol. 68, pp. 259-273, 2003.
    〔7〕Miyamoto, Y., Shimamoto, T., Togo, T., Dong, J. J., Lee, C. T., “Dynamic weakening of bedding-parallel fault gouge as a possible mechanism for catastrophic Tsaoling landslide induced by 1999 Chi-Chi earthquake”, The Next Generation of Research on Earthquake-induced Landslides:An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, pp. 398-401, 2009.
    〔8〕廖軒吾,「集集地震誘發之山崩」,國立中央大學,碩士論文,民國89年。
    〔9〕劉桓吉、李錦發,五萬分之一地質圖說明書,圖幅第三十八號,雲林,經濟部中央地質調查所,台北,1998。
    〔10〕Hung, J. J., Lee, C. T., Lin, M. L., “Tsao-ling rockslides, Taiwan”, Geological Society of America Review in Engineering Geology, Vol. 15, pp. 91-115, 2002.
    〔11〕洪如江、李錫堤、林美聆、林銘郎、鄭富書、陳正興,「天塹可以飛渡、崩山足以斷流(草嶺順向坡滑動)」,地工技術(集集大震地工災害報導),77,5-18頁,2000。
    〔12〕Tsai, Y. B., Lee, C. P., “Strong motion instrumentation programs in Taiwan,” NATO Science Series, Vol. 58, pp. 255-278, 2005.
    〔13〕國家災害防救科技中心,「莫拉克颱風災害概述」,地工技術,121,15-24頁,2009。
    〔14〕李錫堤、董家鈞、林銘郎,「小林村災變之地質背景探討」,地工技術,122,87-94頁,2009。
    〔15〕唐昭榮、胡植慶、羅佳明、林銘郎,「劇變是山崩之PFC3D模擬初探–以草嶺與小林村為例」,地工技術,122,143-152頁,2009。
    〔16〕Dong, J. J., Li, Y. S., Kuo, C. Y., Sung, R. T., Li, M. H., Lee, C. T., Chen, C. C., Lee, W. R. “The formation and breach of a short-lived landslide dam at Siaolin village, Taiwan–Part I:Post event reconstruction of dam geometry” , Engineering Geology, doi:10.1016/j.enggeo.2011.04.001, 2010.
    〔17〕Newmark, N. M., “Effects of earthquakes on dams and embankments,” Geotechnique, Vol.15, pp. 139-159, 1965.
    〔18〕Keefer, D. K., “Statistical analysis of an earthquake-induced landslide distribution–the 1989 Loma Prieta, California event”, Engineering Geology, Vol. 58, pp. 231-249, 2000.
    〔19〕Huang, C. C., Lee, Y. H., Liu, H. P., Keefer, D. K., Jibson, R. W., “Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi Taiwan earthquake”, Bulletin of the Seismological Society of America, Vol. 91, pp. 953-958, 2001.
    〔20〕Jibson, R. W., “Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis”, Transportation Research Record, Vol. 1411, pp. 9-17, 1993.
    〔21〕李旺儒,「比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究」,國立中央大學,碩士論文,民國95年。
    〔22〕Hirose, T., Shimamoto, T., “Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting,” Journal of Geophysical Research, Vol. 110, B05202, doi:10.1029/2004JB003207, 2005.
    〔23〕Mizoguchi, K., Hirose, T., Shimamoto, T., E. Fukuyama, “Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake,” Geophysical Research Letters, Vol. 34, L01308, doi:10.1029/2006GL027931, 2007.
    〔24〕Togo, T., Ma, S. L., Hirose, T., “High-velocity friction of faults:A review and implication for landslide studies”, The Next Generation of Research on Earthquake-induced Landslides:An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, pp. 205-216, 2009.
    〔25〕Shimamoto, T., Tsutsumi, A, “A new rotary-shear high-speed frictional testing machine:its basic design and scope of research”, Journal of Structural Geology, Vol. 39, pp. 65-78, 1994.
    〔26〕Tsutsumi, A., Shimamoto, T., “Frictional properties of monzodiorite and gabbro during seismogenic fault motion”, Geological Society of Japan, Vol. 102, pp. 240-248, 1996.
    〔27〕Tsutsumi, A., Shimamoto, T., “High-velocity frictional properties of gabbro,” Geophysical Research Letters, Vol. 24, pp. 699-702, 1997.
    〔28〕Hirose, T., Shimamoto, T., “Fractal dimension of molten surface as a possible parameter to infer the slip-weakening distance of faults from natural psedotachlytes”, Journal of Structural Geology, Vol.25, pp. 1569-1574, 2003.
    〔29〕Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., Shimamoto, T., “Natural and experimental evidence of melt lubrication of faults during earthquakes”, Science, Vol. 311, pp. 647-649, 2006.
    〔30〕Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., “High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan”, Tectonophysics, Vol. 471, pp. 285-296, 2009.
    〔31〕Han, R., Shimamoto, T., Hirose, T., Ree, J. H., Ando, J., “Ultra-low friction of carbonate faults caused by thermal decomposition”, Science, Vol. 316, pp. 878-881, 2007.
    〔32〕Heim, A., “Landslides and human lives (Bergstrurz and Menchen leben)”, Translated by N. Skermer, Vancouver, pp. 195, Bi-Tech Publishers, 1932.
    〔33〕Hsü, K. J., “Catastrophic debris streams(Sturzstroms)generated by rockfalls”, Geological Society of America Bulletin, Vol. 86, pp. 129-140, 1975.
    〔34〕Hungr, O., Evans, S. G., Bovis, M. J., Hutchinson, J. N., “A review of the classification of landslides of the flow type”, Environmental and Engineering Geoscience, Vol. 17, pp. 221-238, 2001.
    〔35〕Hungr, O., Evans, S. G., “Entrainment of debris in rock avalanches:An analysis of a long run-out mechanism”, Geological Society of America Bulletin, Vol. 116, pp. 1240-1252, 2004.
    〔36〕Dong, J. J., Lee, W. R., Lin, M. L., Huang, A. B., Lee, Y. L., “Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi-Chi earthquake”, Tectonophysics, Vol. 466, pp. 438-457, 2009.
    〔37〕Yano, K., Shimamoto, T., Oohashi, K., Dong, J. J., Lee, C. T., “Ultra-low friction of shale and clayey fault gouge at high velocities: implication for Jiufengershan landslide induced by 1999 Chi-Chi earthquake”, The Next Generation of Research on Earthquake-induced Landslides:An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, pp. 402-406, 2009.
    〔38〕Ferri, F., Di Toro, G., Hirose, T., Shimamoto, T., “Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges”, Terra Nova, Vol. 22, pp. 347-353, 2010.
    〔39〕ASTM, “Standard test methods for laboratory determination of water(moisture)content of soil and rock by mass” , ASTM International, D2216, 2005.
    〔40〕ASTM, “Standard test methods for particle-size analysis of soils”, ASTM International, D422-63, 2007.
    〔41〕ASTM, “Standard test methods for specific gravity of soils solids by water pycnometer” , ASTM International, D854, 2006.
    〔42〕林志芊,「粗氧化鋅之純化研究」,國立台北科技大學,碩士論文,民國99年。
    〔43〕Hung, J. J., “Chi-Chi earthquake induced landslides in Taiwan” , Earthquake Engineering and Engineering Seismology, Vol. 2, pp. 25-33, 2000.
    〔44〕Tsou, C. Y., Feng, Z. Y., Chigira, M., “Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan” , Geomorphology, Vol. 127, pp. 166-178, 2010.
    〔45〕莊志勇,「斷層泥力學行為對斷層滑移機制之研究」,國立台灣大學,碩士論文,民國89年。
    〔46〕徐鐵良編著,地質與工程,台灣工程基本資料叢書之四,11版,中國工程師學會,台北,1993。

    QR CODE
    :::