| 研究生: |
李宗庭 Tsung-Ting Lee |
|---|---|
| 論文名稱: |
對數常態分布在氣膠消光係數廓線擬合之應用 Application of lognormal distribution to aerosol extinction profile mapping |
| 指導教授: |
林唐煌
Tang-Huang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 單峰氣膠垂直廓線 、對數常態分布 、行星邊界層高度 、氣膠光學厚度 、消光廓線極值高度 |
| 外文關鍵詞: | Aerosol extinction profile, Lognormal distribution, Planetary boundary layer height, Aerosol optical depth, Mode |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣中的懸浮微粒(氣膠)除在地球輻射收支及氣候變遷之影響外,對於人體健康亦有著相當的衝擊,尤其是近地表的細懸浮微粒(PM2.5)。對於PM2.5的監測,通常以地面測站為主要觀測方式,雖能提供高品質之觀測資料,但常受限於測站的點位,無法滿足空間上的需求。衛星遙測雖能進行大範圍的觀測,對於近地表資訊之提供仍有其限制性,主要關鍵在於氣膠垂直分布訊息之不足。因此本研究旨在結合地面及衛星觀測資料,建立獲取氣膠垂直廓線之方法。
由於對數常態分布曲線與單峰氣膠垂直廓線之分布型態頗為相似,本文嘗試利用氣膠光學厚度(AOD)及行星邊界層高度(PBLH),配合消光廓線極值高度(Mode)之定義,建立對數平均(μ)和對數標準差(σ)之轉換關係,以對數常態分布進行氣膠垂直廓線之擬合。藉由10年地面觀測資料之測試結果顯示,Mode和σ參數反演之平均誤差分別為16.1%和25.3%,其中在PBLH與Mode差距較大的情況下,則可獲得較佳之結果,σ平均誤差為16.5%。最後將所建立的方法應用於MODIS AOD的產品進行測試,結果指出在525公尺高度以下為均勻混合層的假設下,近地面PM2.5濃度的計算結果與地面觀測資料頗為吻合,顯示對數常態分布在單峰氣膠垂直廓線擬合之可行性,對於後續衛星觀測資料在近地面PM2.5監測之應用幫助很大。
The effect of atmospheric aerosols is an important component on environmental issues such as earth radiation budget and climate change. Heavy loading of particulate matter (PM2.5) also has significant impact on human health, especially in the level near surface. The ground-based measurement is usually employed for the PM2.5 monitor, but the stationed location cannot meet the request in spatial distribution. On the other hand, satellite remote sensing could be a better way to provide the spatial distribution in both regional and global aerosols, but the information near surface is still restrictive by the vertical distribution of aerosols. Therefore, this study aims at aerosol extinction profile mapping by means of the mathematical function.
Because of the similarity in distribution pattern, the lognormal distribution is examined for mapping the aerosol extinction profile with single peak. The variables of lognormal distribution are log mean (μ) and log standard deviation (σ), which will be correlated with the parameters of aerosol optical depht (AOD) and planetary boundary layer height (PBLH) associated with the altitude of extinction peak (Mode) defined in this study. With 10 years ground-based measurements, the results showed that the mean error of Mode and σ retrieval are 16.1% and 25.3%, respectively. The mean error of σ retrieval can be reduced to 16.5% under the cases of larger distance between PBLH and Mode. The proposed method is further applied to MODIS AOD product in mapping extinction profile for the retrieval of PM2.5 in terms of satellite observations. The results indicated well agreement between retrievals and ground measurements when aerosols under 525 meters are well-mixed. The feasibility of proposed method to satellite remote sensing is also suggested by the case study.
許俊傑,2016,Landsat-7衛星資料反演都市大氣氣膠光學厚度之研究與應用。國立中央大學遙測科技碩士學程碩士論文,中壢。
林韋彤,2013,AERONET觀測資料在氣膠種類輻射參數之探討。國立中央大學太空科學研究所碩士論文,中壢。
徐開炫,2010: 2009 年春季鹿林山背景站氣膠垂直分佈與光學特性分析。國立中央大學大氣物理研究所碩士論文,中壢。
賈浩平,2008:微脈衝光達及太陽光度計之應用:2005-2007 年中壢地區氣膠光學垂直特性分析。國立中央大學大氣物理研究所碩士論文,中壢。
王聖翔,2007:亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及對氣象場的反饋作用。國立中央大學大氣物理研究所博士論文,中壢。
郭俊江,2006:光達及太陽光度計之應用:2005 年中壢氣膠光學垂直特性及邊界層高度之變化。國立中央大學大氣物理研究碩士論文,中壢。
Brooks, N., & Legrand, M. (2000). Dust variability over northern Africa and rainfall in the Sahel. In Linking climate change to land surface change (pp. 1-25). Springer Netherlands.
Chu, D.A., Tsai, T.C., Chen, J.P., Chang, S.C., Jeng, Y.J., Chiang, W.L. and Lin, N.H., 2013, Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements. Atmospheric Environment 79, 172-187.
Chan, P.W.,2010, Determination of Backscatter-Extinction Coefficient Ratio for LIDAR-Retrieved Aerosol Optical Depth Based on Sunphotometer Data. Remote Sensing 2, 2127-2135.
Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J.D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002, Full-time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites:Instrument and Data Processing, J. Atmos. Oceanic Technol 19, 431-442.
Lin, C., Li, Y., Yuan, Z., Lau, A.K., Li, C. and Fung, J.C., 2015, Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sensing of Environment 156, 117-128.
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., ... & Korrmann, R. (2002). Global air pollution crossroads over the Mediterranean. Science, 298(5594), 794-799.
Tsai, T.C., Jeng, Y.J., Chu, D.A., Chen, J.P. and Chang. S.C., 2011, Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment 45, 4777-4788.
Wang, S.H., Lin, N.H., Chou, S.C., Tsay, E. J., Welton, N. C., Hsu, D. M., Liu, G.R., and B. N. Holben., 2010, Profiling transboundary aerosols over Taiwan and assessing their radiative effects. Journal of Geophysical Research 115, D00K31, doi:10.1029/2009JD013798.
Quan, J.N., Yang, G. , Qiang, Z.G. , Xuexi, T., Caoc, J.J., Hane, S.Q., Junwang M.G., Chena P.F. & Zhaoa, D.L. 2012, Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology 11, 34– 40