| 研究生: |
王嘉賢 Chia-Hsien Wang |
|---|---|
| 論文名稱: |
基於工程設計流程的STEM專題本位課程對國小高年級生學習成效之影響 The Effects of Implementing the STEM Project-Based Learning Curriculum Based on Engineering Design Process on Upper Grade Students of Elementary School |
| 指導教授: | 吳穎沺 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 網路學習科技研究所 Graduate Institute of Network Learning Technology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | STEM課程 、專題本位學習 、工程設計流程 |
| 外文關鍵詞: | STEM curriculum, Project-Based Learning, Engineering Design Process |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在探究基於工程設計流程的STEM(Science, Technology, Engineering,and Mathematics)專題本位課程對國小高年級學生在科學、數學、工程與科技之整合學習的學習態度及成效。本研究首先探討與 STEM 教學相關之理論與文獻,並以工程設計流程作為 STEM 專題本位課程的教學法,採準實驗研究法,選取新北市某國小六年級兩班學生為研究對象,分別實施工程設計流程與一般探究和實作活動的教法,進行五週的教學實驗,其教學內容為巧妙的施力工具單元的教學活動,不過後因 COVID19 疫情之影響,於第三周改為線上授課。研究工具為科學概念的成就測驗、科技與工程認知測驗、對科技探究能力量表、對工程的態度量表及對科學的興趣量表,並以SPSS20.0 進行描述性統計、相關、與共變數分析。本研究發現:
一、基於工程設計流程的教學對學生在科學概念的理解是有幫助的,尤其在記憶與理解部分。
二、基於工程設計流程的教學可提升學生對科技與工程的認知。
三、基於工程設計流程的教學可提升學生在科技探究能力中對於界定問題、
設計規劃、和解釋分析的學習成效。
四、基於工程設計流程的教學未能提升學生對工程態度,但對於工程對社會
的價值判斷是有效果的。
五、基於工程設計流程的教學未能提升學生對科學的學習興趣,但有利於學
生對科學的學習自信與學科的評價。
最後本研究也建議在國小自然的教學可選擇與科技和工程較為相關的單元來設計實作活動,並實施工程設計流程的教學,藉此提升 STEM 教學的學習成效。另一方面COVID-19 影響雖然改為線上課程,卻也發現線上討論平台可做為持續提供學生對話的機會,對於接受工程設計流程教學的學生在知識概念的建構,工程態度的培養是有幫助的,因此本研究在未來能作為線上學習採取工程設計流程教學的參考依據。
The quasi-experimental study aims to examine the effectiveness and the integrative learning attitude of STEM (Science, Technology, Engineering, and Mathematics)Project-Based Learning curriculum based on engineering design process, on 6th graders’ Science,
Mathmatics, Engineering and Technology domains. Two groups of 6th graders of New Taipei City participated in this study for 5 weeks. The participants were trained to learn the unitMechanics: How to Work Effectively and seperated into control group and experiment group. The teaching method on two groups were Inquiry Teaching Method with practical operating process and STEM Project-Based Learning curriculum based on engineering design process. The instructions were given via in-person classes for the first two weeks, and the third, fourth, and fifth weeks were online classes due to COVID-19.
After the instructions, quantitative data were collected via pre- and posttests of Scientific Concepts proficiency test, Technology and Engeineering Cognition test, the Ability of Technology Inguiry Scale, the Engineering Attitude Scale, and the Interests in Science Scale. Participants’ responses were analyzed and interpreted in the thematic method, throught desciptive statistics, correlation analysis, and analysis of covariance SPSS 20.0.
The results of this study indicates that:
(1) Currirulum based on engineering design process is helpful for students to comprehend
Scientific concepts, especially on Remembering and Understanding.
(2) Currirulum based on engineering design process enhances students’ cognition of
Technology and Engineering.
(3) Currirulum based on engineering design process lifts the learning effects of students’
ability of Technology Inguiry on defining problems, planning, and explainging and analyzing.
(4) Currirulum based on engineering design process doesn’t enhance students’ attitude
toward engineering, but it works on the value judgement of engineering toward the society.iii
(5) Currirulum based on engineering design process doesn’t raise students’ interests in
Sciene, but it benefits the confidence of learning Science and the value toward Science.
At last, this study suggests that teachers may choose Technology and Engineering related
units to implement currirulum based on engineering design process to enhance the effectiveness of STEM Project-Based Learning curriculum. On the other hand, though we had
to switch the in-person classes to online classes, we found online platforms are useful for students to construct the concepts of currirulum based on engineering design process, and cultivate the attitude toward engineering. Based upon the study results, we recommend this study to the reference of online learning based on engineering design process in the future.
參考文獻
一、中文部分
丁毓珊和葉玉珠 (2021)。教師面對素養導向評量的挑戰與省思。臺灣教育評論月刊
10(3),21-25。
林坤誼(2014)。STEM 科際整合教育培養整合理論與實務的科技人才。科技與人力
教育季刊 1(1),1。
許宜庭(2016)。應用工程設計思考的 STEM 專題本位學習活動對職前科技教師工程
設計思考之影響。國立臺灣師範大學科技應用與人力資源發展學系碩士論文,未
出版,臺北市。
黃嘉眉(2020)。以想法為中心的合作科學探究學習平台之系統開發與初步評估。國
立中央大學網路學習科技研究所碩士論文,未出版,桃園市。
陳毓凱、洪振方(2007)。兩種探究取向教學模式之分析與比較。科學教育學刊,
305,4-19。
陳冠吟(2015)。STEM 取向的科技教育-以鼠夾車為例。科技與人力教育季刊,2
(1),63-81。
唐偉成(日期不詳)。STEAM 課程的發展架構與教學活動設計。臺灣網路科教館。取
自 https://www.ntsec.edu.tw/LiveSupplyContent.aspx?a=6829&fld=&key=&isd=1&icop=10&p=1&lsid=16157
劉景福和鍾志賢(2002)。基於項目學習(PBL)模式研究。外國教育研究(11),18-
22
教育部(2014)。十二年國民基本教育課程綱要總綱。取自 http://www.naer.
edu.tw/files/15-1000-79 44,c639-1.php?Lang=zh-tw79
二、外文部分
Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007).
Engineering design processes: A comparison of students and expert practitioners.
Journal of Engineering Education, 96(4), 359–379.
BIE (2017). What is project based learning (PBL). Retrieved from
http://www.bie.org/about/what_pbl
Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (Eds). (1964).
Taxonomy of educational objectives: The classification of educational goals. (Handbook
Ⅱ:affective domain). New York: David Mckay
Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and
Engineering Teacher, 70(1), 30-35.
Bybee, R. W. (2013). The Case for STEM Education: Challenges and Opportunities.
Arlington, VA: NSTA Press.
Cunningham, C. M. (2009). Engineering is elementary. The Bridge, 39(3), 11–17.
Dugger Jr., W. E. (2010). Evolution of STEM in the United States. In 6th Biennial
International Conference on Technology Education Research in Australia. Retrieved July
16, 2014, form http://www.iteea.org/Resources/PressRoom/AustraliaPaper.pdf
Dym, C. L., A. M. Agogino, O. Eris, D. D. Frey, & L. J. Leifer. (2005). Engineering design
thinking, teaching, and learning. Journal of Engineering Education. 94: pp. 103-120.
Hynes, M. M. (2012). Middle-school teachers’ understanding and teaching of the engineering
design process: A look at subject matter and pedagogical content knowledge.
International Journal of Technology and Design Education, 22, 345–360
ITEEA (2000). Standards for Technological Literacy:Content for the Study of Technology.
Reston, VA:International Technology and Engineering Educators Association.
Lachapelle, C. P. & Cunningham, C. M. (2007). Engineering is elementary:
Children’s changing understandings of science and engineering. In ASEE Annual 80
Conference and Exposition.
Lachapelle, C. P. & Cunningham, C. M. (2017). Elementary engineering student
interests and attitudes: A comparison across treatments. Paper presented at the
American Society for Engineering Education Annual Conference and Exposition,
Columbus, OH. Avialable at:
https://www.asee.org/public/conferences/78/papers/20187/view
Lin, K. Y., Hsiao, H. S., Williams, P. J., & Chen, Y. H. (2020). Effects of 6E-oriented STEM
practical activities in cultivating middle school students’ attitudes toward technology and
technological inquiry ability. Research in Science and Technological Education, 38(1), 1-
18. https://doi.org/10.1080/02635143.2018.1561432
Lin, K. Y., Wu, Y. T., Hsu, Y. T. et al. (2021). Effects of infusing the engineering design
process into STEM project-based learning to develop preservice technology teachers’
engineering design thinking. IJ STEM Ed , 8, 1.
https://doi.org/10.1186/s40594-020-00258-9
Lou, S. J., Chou, Y. C., Shih, R. C. & Chung, C. C. (2017). A study of creativity in CaC2
steamship derived STEM project-based learning. Eurasia Journal of Mathematics,
Science and Technology Education,13, 6: 2387-2404
Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H.
(2014). Implementation and integration of engineering in K-12 STEM education:
Synthesizing research, policy, and practices. In S. Purzer, J. Strobel, & M. Cardella
(Eds.), Engineering in pre-college settings: Research into practice (pp. 35-60). West
Lafayette, IN: Purdue University Press.
Mobley, M. C. (2015). Development of the SETIS instrument to measure teachers’s
selfefficacy to teach science in an integrated STEM framework. (Doctoral Dissertation).
Tennessee: University of Tennessee, Knoxville.81
NAE & NRC. (2002). Technically Speaking: Why All Americans Need to Know More About
Technology. Available at www.nap.edu/catalog.php?record_id=10250
National Academy of Engineering, & National Research Council. (2014). STEM
integration in K-12 education: Status, prospects, and an agenda for research. Washington,
DC: The National Academies Press. Retrieved from https://doi. org/10.17226/18612.
NGSS Lead States. (2013). Next generation science standards: For states, by
states. Washington, DC: The National Academies Press.
NRC (2012). A framework for K-12 science education: Practices, core ideas, and crosscutting
concepts. Washington, DC: National Academy Press. doi: 10.17226/13165
Sanders, M. (2009). STEM, STEM education, STEM mania. The Technology Teacher, 68(4),
20–26.
Tsupros, N., Kohler R., & Hallinen, J. (2009). STEM education: A project to identify the
missing components. Intermediate Unit 1 and Carnegie Mellon, Pennsylvania.
Vasquez, J., Sneider, C., & Comer, M. (2013). STEM Lesson Essentials, Grades 3–8:
Integrating Science, Technology, Engineering, and Mathematics. Portsmouth, NH:
Heinemann.
Wang, H. H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher
perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2),
2