| 研究生: |
連紘震 Hung-Chen Lien |
|---|---|
| 論文名稱: |
動態離心模型試驗探討含薄沉泥夾層的砂層之液化機制 Liquefaction mechanism in layered sand using dynamic centrifuge modeling test |
| 指導教授: |
陳慧慈
Huei-Tsyr Chen 李崇正 Chung-Jung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 離心模型振動台試驗 、薄沉泥夾層 、砂層液化 |
| 外文關鍵詞: | geotechnical centrifuge shaking table tests, liquefaction of sand, thin silt intra-layer |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用1-D離心模型振動台試驗,探討含薄沉泥夾層的疏鬆砂層之液化機制。藉由二組在不同深度含薄沉泥夾層的砂試體以及一組純砂試體,三組砂試體的相對密度相同、利用相同黏滯係數的孔隙流體來飽和試體,並且以相同的振動振幅施以水平振動,觀察薄沉泥夾層對震波傳遞、液化的深度及範圍、液化延時、孔隙水壓分布和消散及地表沉陷的影響,藉此探討薄沉泥夾層對砂土液化所扮演的角色及其工程上的影響。
研究結果顯示:(1)含薄沉泥夾層的砂土層,液化發生的範圍與沉陷量較小。(2)薄沉泥夾層出現在近地表處時,只在沉泥層下方液化。若薄沉泥層出現於深層時,不單沉泥層下方砂土發生液化,連上方也會液化。(3)當液化發生時,剪力波無法直接傳入上部液化砂層,因此能量會因反射集中在液化層下方,因此位於深層的薄沉泥夾層相較淺層的薄沉泥夾層,底部的超額孔隙水壓之激發會較大。
Three dynamic centrifuge modeling tests were conducted to simulate the seismic response for the sandy soil deposits without a silt intra-layer and with a thin silt intra-layer at various depths. These three models had the same relative density and were saturated with the same viscosity pore fluid and were finally subjected to the same magnitude of base acceleration. The aim of this study is to investigate the effect of low-permeability thin silt intra-layer at the different depths in a loose sand deposit on the generation and dissipation of excess pore water pressure in the sand deposit, the shear wave propagation, the surface settlements and the related liquefaction mechanism.
The test results show that (1) the thin silt intra-layer in the sand deposit can reduce the extent of liquefaction and the surface settlement; (2) liquefaction occurs only in the sand beneath the thin silt layers near the surface. However, for the deeper thin silt intra-layer, liquefaction occurs not only in the sand beneath the thin silt layers but also in the sand near the surface; (3) the shear wave cannot propagate to the top of liquefaction layer, and the wave will reflect back, therefore, the sand deposit with the deeper thin silt intra-layer has greater excess pore water pressure due to deeper liquefaction.
[1]李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669頁(1994)。
[2]郭玉潔,「探討積層板試驗箱進行動態離心模型試驗之邊界效應」碩士論文,國立中央大學土木工程學系,中壢(2009) 。
[3] 山口晶,吉田望,飛田善雄,「再液状化メカニズムに関する実験的研究」,日本地震工学会論文集, Vol.8, No.3 ,PP.46-62,(2008)。
[4]Acutronic, Civil Engineering Centrifuge Model 665-1 Installation Manual 5941E, France (1992).
[5]Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France (1993).
[6]Kokusho,T. ,“Water film in liquefied sand and its effect on lateral spread,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.10, pp.817-826, (1999).
[7]Kokusho,T. ,“Mechanism for water film generation and lateral flow in liquefied sand layer,” Soils and Foundations, Vol.40, No.5, pp.99-111, (2000).
[8]Kokusho,T. and Kojima,T. ,“ Mechanism for post-liquefaction water film generation in layered sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.2, pp.129-137, (2002).
[9]Brennan, A. J., and Madabhushi, S.P.G., “Effectiveness of vertical drains in mitigation of liquefaction,” Soil Dynamics and Earthquake Engineering , Vol. 22, pp. 1059–1065, (2002).
[11]Brennan, A. J., and Madabhushi, S.P.G., “Liquefaction and drainage in stratified soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.7, pp.876-885, (2005).
[12] Malvick, E. J., Kutter, B. L., Boulanger, R. W., Feigenbaum ,H. P.,“ Post-shaking Failure of Sand Slope in Centrifuge Test,” 11th SDEE and 3rd ICEGE, Univ. of California, Berkeley, Vol.2, pp.447-455, (2004).
[13] Malvick, E. J., Kutter, B. L., Boulanger, R. W., Feigenbaum ,H. P.,“ Analysis of a void redistribution mechanism in liquefied soil” Proceeding of the 12th Panam. Conference on Soil Mechanism & Geotechnical Engineering, Cambridge, England, pp. 955-961, (2003)
[14]Elgamal, A.W., Dobry, R., Adalier, K., “Study of Effects of Clay Layers on Liquefaction of Sand Deposits Using Small-Scale Models,” Proceedings, 2nd US-Japan Workshop on Liquefaction, Large Ground Deformation and Their Effects on Lifelines, T. D. O''Rourke and M. Hamada (eds.), pp.145-160,(1989).
[15]Yang, Z., “Numerical modeling of earthquake site response including dilation and liquefaction,” Ph.D. Thesis, Department of Civil Engineering and Engineering Mechanics (CEEM), Columbia University, New York, NY. (2000)
[16]Sharp, M. K., Dobry, R., Abdoun,T.“Liquefaction centrifuge modeling of sands of different permeability,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.12, pp.1083-1091, (2003).
[17]Stewart, D.P., Chen,Y.-R. , Kutter, B. L.“Experience with the use of methylcellulose as a viscous pore fluid in centrifuge models,” Geotechnical Testing Journal, GTJODJ, Vol.21, No.4, pp.365-369, (1998).
[18]Zeng,X. “ Several important issues related to liquefaction study using centrifuge modeling,” Physics and Mechanics of Soil liquefaction , Lade & Yamamuro (eds) , pp.283-320, (1999).