跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴盈真
Ying-Chen Lai
論文名稱: 一維矩陣係數驗證及半導體元件模擬
1D Matrix Coefficient Verification And Semiconductor Device Simulation
指導教授: 蔡曜聰
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 57
中文關鍵詞: 矩陣係數半導體元件模擬一維蔡曜聰程式模擬
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要開發一套半導體元件模擬程式,建立矩陣係數法是為了確保程式對於理論值的驗證。我們就能利用我們開發的模擬軟體,模擬各種維度的半導體元件。過去常遇到結果不收斂或是驗證值錯誤,藉由此方法,讀者可以更有效率找出程式中的問題。文中將會驗證矩陣中的係數,比較程式與手算的之間的誤差值,藉以驗證我們所建立的元件模擬的正確性。如此一來,不僅可以驗證程式架構的細節,爾後還能進行BJT等半導體元件模擬,來提升我們模擬電路的彈性度。


    In this thesis, we develop a semiconductor element module system. This system can ensure the verification of the theoretical value of the formula by the matrix coefficient method. We can use the simulation system we developed to simulate semiconductor elements of various dimensions. In the past, the results were often not converged or the verification value was wrong. With this method, the reader can more efficiently find the problems in the device simulation by comparing the error values between the computer programs and the hand calculation. In this way, we can verify the details of the system, and can simulate semiconductor component such as BJT , in order to improve the flexibility of our semiconductor devices.

    摘要.i Abstact .........ii 圖目錄......... v 表目錄.........vii 第一章 簡介1 第二章 電路版電腦模擬之架構..........5 2.1 雙迴圈電路基本結構分析...5 2.2 零件掃描法之探討.7 2.3 矩陣係數法之基本介紹.....11 第三章 一維模型及矩陣係數驗證....15 3.1 一維等效電路模型之推導.15 3.2 矩陣係數推導及驗證.........18 3.3 電阻及PN接面應用….........29 第四章 三維重心法及係數驗證........32 4.1 三維重心法等效電路.........32 4.2 三維矩陣係數驗證法.........34 4.3 三維模型檢討與建議.........41 第五章 結論...........42 參考文獻...44

    [1] Y. M. Li, “Research on Development of Computer Simulation Methods for Semiconductor Devices and Nanostructures,” D. S. Thesis, Institute of Electronics, National Chiao Tung University, Taiwan, Republic of China, 2000.
    [2] From Wikipedia, the free encyclopedia “Newton's method” This article is about Newton's method for finding roots. For Newton's method for finding minima, see Newton's method in optimization.
    [3] Zoolfakar A. S. and Shahrol N. A., “Modelling of NPN Bipolar Junction Transistor Characteristics Using Gummel Plot Technique”2010 International Conference on Intelligent Systems, Modelling and Simulation, Liverpool, UK, 2010.
    [4] Jia-liang Hong ,”Analysis and Simulation of 2-D Semiconductor Device by Linear Components” , M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2010.
    [5] P. Feldmann , R.A. Rohrer ,“Proof of the number of independent Kirchhoff equations in an electrical circuit” , AT&T Bell Lab., Murray Hill, NJ, USA, 1991.
    [6] Qingmin Liu , S. Sutar , A. Seabaugh, “Tunnel diode/transistor differential comparator” Troy, NY, USA, 2005.
    [7] R. A. Jabr, M. Hamad, Y. M. Mohanna, “Newton-Raphson Solution of Poisson’s Equation in a PN Diode,” Int. J. Electrical Eng. Educ., Jan. 2007.
    45
    [8] Wenchao Liang , N. Goldsman , I. Mayergoyz , P.J. Oldiges, “2-D MOSFET modeling including surface effects and impact ionization by self-consistent solution of the Boltzmann, Poisson, and hole-continuity equations,” Maryland Univ., College Park, MD, USA, 1997.
    [9] Shiyue Zhang, Mohit Bansal ,“Addressing Semantic Drift in Question Generation for Semi-Supervised Question Answering”, UNC Chapel Hill, USA, 2019.
    [10] N. Jankovic , T. Pesic , J. Karamarkovic” 1D physically based non-quasi-static analog behavioral BJT model for SPICE”, Nis, Yugoslavia, 2002.
    [11] Dan Sachelarie , Gabriel Predusca” Analytical Model for Collector Current Gummel Plots of Heterojunction Bipolar Transistors”, Santiago de Compostela, Spain, 2009.
    [12] C.C. McAndrew , J. Bates , R.T. Ida , P. Drennan”Efficient statistical BJT modeling, why /spl beta/ is more than I/sub c//I/sub b/”, Minneapolis, MN, USA, 1997.
    [13] J. H. Seo, Y. J. Yoon, S. Lee, J. H. Lee, S. Cho, and I. M. Kang, “Design and Analysis of Si-Based Arch-Shaped Gate-All-Around (GAA) Tunneling Field-Effect Transistor (TFET),” Republic of Korea, 2015.
    [14] B. Adolph and F. Bechstedt, “Ab Initio Second-Harmonic Susceptibilities of Semiconductors: Generalized Tetrahedron Method and Quasiparticle Effects,” Physical Review B, USA, 1998.
    [15] Yi-Ying Li ,“Finding internal vector from the Taylor series in tetrahadron element for 3D semiconductor device simulation”, M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2019.
    46
    [16] Hui-Yu Chen “Finding internal vector from the Taylor series in arbitrary triangle element for 2D semiconductor device simulation” , M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2019.
    [17] Adam R. Klivans , Ryan O'Donnell , Rocco A. Servedio,” Learning Geometric Concepts via Gaussian Surface Area” Philadelphia, PA, USA, 2008.
    [18] Jörg Weiser , Peter S. Shenkin ,W. Clark Still,“ Optimization of Gaussian surface calculations and extension to solvent‐accessible surface areas”, USA, 1999.

    QR CODE
    :::