| 研究生: |
洪偉祥 Wei-Hsiang Hung |
|---|---|
| 論文名稱: |
具有H infinity性能之 T-S 模糊時間 H infinity control for T-S fuzzytime-delay systems |
| 指導教授: |
莊堯棠
Yau-Tarng Juang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | T-S模糊模型 、Lyapunov法 、線性矩陣不等式 、非線性系統 |
| 外文關鍵詞: | Lyapunov stable, LMI, T-S fuzzy model, nonlinear systems |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是討論非線性之時間延遲系統在加入模糊控制器後之穩定度,以及考慮當系統存在外部干擾時,系統對外部干擾的容忍能力。首先以Takagi 和 Sugeno模糊模型來表示所討論的非線性之時間延遲系統,再來加入模糊控制器,並討論此時系統未加入雜訊時的穩定狀態;接著加入外部雜訊並以 控制理論作為系統對抗雜訊容忍程度的控制,以求得系統的性能指標 。最後將以化學攪拌槽的例子做為本文中所提出方法的模擬驗證。
This thesis introduces a fuzzy linear control design procedure for the nonlinear time-delay systems with optimal robustness performance. Based on the Takagi–Sugeno (T-S) fuzzy models, a fuzzy state feedback controller is developed to stabilize the nonlinear time delay system by the Lyapunov approach. Besides, the effect of external disturbance on control performance is attenuated to a minimum value. Thus based on the fuzzy linear model, performance design can be achieved in nonlinear control systems. Sufficient conditions for the existence of fuzzy state feedback gain are derived through the numerical solution of a set of linear matrix inequalities. An illustrative example based on the continuous stirred tank reactor (CSTR) model is presented.
[2] S. Boyd, L. E, Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Philadelphia, 1994.
[3] Y. Y. Cao and P. M. Frank, “Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach,” IEEE Transactions on Fuzzy Systems, vol. 8, pp. 200 – 211, April. 2000.
[4] B. S. Chen, T. S. Lee, and J. H. Feng, “A nonlinear control design in robotic systems under parameter perturbation and external disturbance,” International Journal of Control, vol. 59, pp. 439–461, 1994.
[5] B. S. Chen, C. H. Lee and Y. C. Chang, “ tracking design of linear systems: Adaptive fuzzy approach,” IEEE Transactions on Fuzzy Systems, vol. 4, pp. 32–43, Nov. 1996.
[6] B. S. Chen, H. J. Uang and C. S. Tseng, “Robust tracking enhancement of robot systems including motor dynamics: A fuzzy-based dynamic game approach,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 538–552, Nov. 1998.
[7] B. S. Chen, C. S. Tseng and H. J. Uang, ” Robustness design of nonlinear dynamic systems via fuzzy linear control,” IEEE Transactions on Fuzzy Systems, vol. 7, pp. 571 – 585, Oct. 1999.
[8] M. J. Er, D. H. Lin, “A New Approach for Stabilizing Nonlinear Systems with Time Delays,” International Journal of Intelligent Systems, vol. 17, pp. 289–302, 2002
[9] B. Friedland, Advanced Control System Design. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[10] P. Gahinet, A. Nemirovski and A. J. Laub, LMI control toolbox user’s guide, Natick, Ma: The Mathworks Inc., 1995.
[11] Y. Gu, H.O. Wang, K. Tanaka and L.G. Bushnell, “Fuzzy control of nonlinear time-delay systems: stability and design issues,” Proceedings of the 2001, American Control Conference, 2001, vol. 6, pp. 4771 - 4776, June. 2001.
[12] A. Isidori and A. Asolfi, “Disturbance attenuation and control via measurement feedback in nonlinear systems,” IEEE Transactions on Automatic Control, vol. 37, pp. 1283–1293, Sept. 1992.
[13] A. Isidori, “ control via measurement feedback for affine nonlinear systems,” International Jouronal Robust and Nonlinear Control, 1994.
[14] H. K. Khalil, Nonlinear Systems. London, U.K.: Macmillan, 1992.
[15] E. Kim, M. Park, S. Ji, and M. Park, “A new approach to fuzzy modeling,” IEEE Transactions on Fuzzy Systems, vol. 5, pp. 328–337, Aug. 1997.
[16] B. Lehman and E. I. Verriest, “Stability of a continuous stirred reactor with delay in the recycle streams,” in Proc. 30th IEEE Conf. Dec. Contr., Brighton, U.K., pp. 1875–1876, 1991.
[17] B. Lehman, J. Bentsman, S. V. Lunel, and E. I. Verriest, “Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior,” IEEE Transactions on Automatic Control, vol. 39, pp. 898–912, May 1994.
[18] D. H. Lin, M. J. Er, “A New Approach for Stabilizing a TS Model Fuzzy System,” International Journal of Intelligent Systems, vol. 16, pp. 1321–1332, 2001.
[19] J. Lygeros, “A formal approach to fuzzy modeling,” IEEE Transactions on Fuzzy Systems, vol. 5, pp. 317–327, Aug. 1997.
[20] K. Narendra and A. M. Annaswamy, “A new adaptation law for robust adaptation without persistent excitation,” IEEE Transactions on Automatic Control, vol. AC-32, pp. 134–145, Feb. 1987.
[21] R. Palm, D. Driankov, and H. Hellendoorn, Model Based Fuzzy Control.Berlin, Germany: Springer-Verlag, 1997.
[22] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” IEEE Transactions on Fuzzy Systems, vol. 28, pp. 15–33, Oct. 1988.
[23] M. Sugeno, Fuzzy Control. 1988 (in Japanese).
[24] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Sysems., vol. 45, no. 2, pp. 135–156, 1992.
[25] K. Tanaka, T. Ikeda, and H.O. Wang, ”Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 250 – 265, May. 1998.
[26] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, Cybernetics, vol. SMC-15, pp. 116–132, Jan. 1985.
[27] T. Takagi and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135–156, 1992
[28] M.C.M Teixeira and S.H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 14–23. 1999.
[29] H. Wang, K. Tanaka, and M. Griffin, “Parallel distributed compensationof nonlinear systems by Takagi and Sugeno’s fuzzy model,” in Proc.FUZZY-IEEE, Yokohama, Japan, 1995, pp. 531–538.
[30] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Transactions on Fuzzy Systems, vol. 4, pp. 14–23, Feb. 1996.
[31] R. J. Wang, W. W. Lin and W. J. Wang, “Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 34, Issue: 2 , pp. 1288 - 1292 April. 2004.
[32] L. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Transactions on Systems, Man, Cybernetics, vol. SMC-3, pp. 28–44, Jan. 1973.