| 研究生: |
羅郁仁 YU-REN LUO |
|---|---|
| 論文名稱: |
無機/有機異質界面垂直發光電晶體之研究 Inorganic/Organic Hybrid Vertical Light-Emitting Transistor |
| 指導教授: |
張瑞芬
Jui-Fen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 無機/有機異質界面 、垂直發光電晶體 |
| 外文關鍵詞: | Inorganic/Organic Hybrid, Vertical Light-Emitting Transistor |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究下注入式垂直式發光電晶體,主要架構為氧化鋅電晶體上堆疊有機發光二極體。氧化鋅電晶體為上接觸/下閘極的結構,以透明導電膜為閘極,使用原子層沉積,沉積高介電係數的三氧化二鋁與氧化鉿作為雙層介電層,及N型材料氧化鋅作為半導體層,載子遷移率高達11-12 cm2/Vs。形成低驅動電壓、低接觸電阻及高電子流密度之橫向電晶體。將橫向電晶體源極與汲極接觸作為垂直式發光電晶體源極,以光阻墊高劑與光阻雙層結構,透過光學微影技術,在源極金屬上鍍製絕緣層氧化矽,抑制關電流密度,並有效提高開/關電流比。使用綠光有機材料PFO:F8BT作為發光層。以閘極電壓3V驅動,可得到高電流密度1 A/cm2及高開/關比105-106的下出光垂直發光電晶體,而外部量子效率也接近對應的有機發光二極體的外部量子效率。發光區可由光學微影將氧化鋅圖案化,明確定義發光面積,且能達到次微米等級,具有高開口率等優勢。
This thesis mainly studies on down-injection vertical light-emitting transistors (VLET) which is demonstrated by integration of a ZnO transistor and organic light-emitting diode (OLED). The zinc oxide transistor is a top-contact / bottom-gate structure, a transparent conductive film is used as a gate. Atomic layer deposition (ALD) is used to deposit aluminum oxide and hafnium oxide, which are the high dielectric constant material, as a double dielectric layers and N-type material zinc oxide as a semiconductor layer, the mobility is as high as 11-12 cm2 / Vs. Thus the lateral transistor has low driving voltage, low contact resistance and high electron current density. The source and the drain of the lateral transistor contact together as the source of VLET. With the double-layer structure of LOR and photoresist, through the optical lithography technology, an insulating layer of silicon oxide (SiOx) is deposited on the source to reduce the off-current density, and to improve the on / off current ratio. Use the green organic material PFO: F8BT as the light-emitting layer. Driven by a gate voltage of 3V, the bottom-emission vertical light-emitting transistor produces high current density 1A/cm2 and high on / off ratio 105-106, and the external quantum efficiency(EQE) is close to the EQE of corresponding OLED. The ZnO layer can be patterned by optical lithography to clearly define ligt emitting area, and can reach the sub-micron level, which has the advantages of high aperture ratio and so on.
[1] She, X.-J., Gustafsson, D., & Sirringhaus, H. (2016). A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory. Advanced Materials, 29(8), 1604769.
[2] Kwon, H., Kim, M., Cho, H., Moon, H., Lee, J., & Yoo, S. (2016). Toward High-Output Organic Vertical Field Effect Transistors: Key Design Parameters. Advanced Functional Materials, 26(38), 6888–6895.
[3] Ben-Sasson, A. J., Greenman, M., Roichman, Y., & Tessler, N. (2014). The Mechanism of Operation of Lateral and Vertical Organic Field Effect Transistors. Israel Journal of Chemistry, 54(5-6), 568–585.
[4] L. Ma, Y. Yang, Applied Physics Letters, 85 (2004) 5084.
[5] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, N. Tessler, Applied Physics Letters, 95 (2009) 213301.
[6] C. M. Keum, I. H. Lee, S. H. Lee, G. J. Lee, M. H. Kim, S. D. Lee, Optics Express, 22 (2014) 14750.
[7] K. Y. Wu, Y. T. Tao, C. C. Ho, W. L. Lee, T. P. Perng, Applied Physics Letters, 99 (2011) 093306 .
[8] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, ACS Applied Mater, 7 (2015) 2149-2152.
[9] Nakamura, K., Hata, T., Yoshizawa, A., Obata, K., Endo, H., & Kudo, K. (2006). Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate. Applied Physics Letters, 89(10), 103525.
[10] Lee, G., Lee, I.-H., Park, H.-L., Lee, S.-H., Han, J., Lee, C., … Lee, S.-D. (2017). Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway. Journal of Applied Physics, 121(2), 024502.
[11] Franz Michael Sawatzki, Duy Hai Doan, Hans Kleemann,Matthias Liero,Annegret Glitzky,Thomas Koprucki, and Karl Leo, “Balance of Horizontal and Vertical Charge Transport in Organic Field-Effect
Transistors,” PHYSICAL REVIEW APPLIED 10, 034069 (2018).
[12] M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys. 38, 2042 (1963)
[13] M. Greenman, A. J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Applied Physics Letters, 103 (2013) 073502.
[14] A. J. Ben-Sasson , N, Tessler, Nano Letter, 12 (2012) 4729-4733.
[15] Kwon, S., Bang, S., Lee, S., Jeon, S., Jeong, W., Kim, H., … Jeon, H. (2009). Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures. Semiconductor Science and Technology, 24(3), 035015.
[16] Cui, G., Han, D., Dong, J., Cong, Y., Zhang, X., Li, H., … Wang, Y. (2017). Effects of channel structure consisting of ZnO/Al2O3 multilayers on thin-film transistors fabricated by atomic layer deposition. Japanese Journal of Applied Physics, 56(4S), 04CG03.
[17] Huby, N., Ferrari, S., Guziewicz, E., Godlewski, M., & Osinniy, V. (2008). Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition. Applied Physics Letters, 92(2), 023502.
[18] Oh, M. S., Lee, K., Song, J. H., Lee, B. H., Sung, M. M., Hwang, D. K., & Im, S. (2008). Improving the Gate Stability of ZnO Thin-Film Transistors with Aluminum Oxide Dielectric Layers. Journal of The Electrochemical Society, 155(12), H1009.
[19] Liu, X., Ramanathan, S., & Seidel, T. E. (2003). Atomic Layer Deposition of Hafnium Oxide Thin Films from Tetrakis(dimethylamino)Hafnium (TDMAH) and Ozone. MRS Proceedings, 765.
[20] W.D. Gill, Journal of Applied Physics, 43 (1972) 5033.
[21] M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Applied Physics Letters, 81 (2002) 268.
[22] K.C. Yoon MH, Facchetti A, Marks TJ., J Am Chem Soc, 128(39) (2006) 12851-12869.
[23] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, T. Sakurai, Applied Physics Letters, 84 (2004) 3789.
[24] H.S. Jana Zaumseil, Chem. Rev, 107 (2007) 1296-1323.
[25] Natalie Stutzmann, Richard H. Friend, and Henning Sirringhaus, Self-aligned, vertical-channel polymer field-effect transistors, Science 299, 1881 (2003).
[26] Sawatzki, F. M., Hauke, A. A., Doan, D. H., Formanek, P., Kasemann, D., Koprucki, T., & Leo, K. (2017). On Razors Edge: Influence of the Source Insulator Edge on the Charge Transport of Vertical Organic Field Effect Transistors. MRS Advances, 2(23), 1249–1257.
[27] Gil Sheleg, Michael Greenman, Bjorn Lussem, and Nir Tessler, “Removing the current-limit of vertical organic field effect transistors, ”JOURNAL OF APPLIED PHYSICS 122, 195502 (2017)
[28] Dinesh Kabra, Li Ping Lu, Myoung Hoon Song, Henry J. Snaith,
and Richard H. Friend, “Efficient Single-Layer Polymer Light-Emitting Diodes,”Adv. Mater. 2010, 22, 3194–3198.
[29] J.-F. Chang, Y.-C. Lai, R.-H. Yang, Y.-W. Yang, & C.-H. Wang. (2017). Improvement of vertical organic field-effect transistors by surface modification of metallic source electrodes. Applied Physics Express, 10, 11601.
[30] Li Ping Lu, Dinesh Kabra, and Richard H. Friend, “Barium Hydroxide as an Intrelayer Between Zinc Oxide and a Luminescent Conjugated Polymer for Light-Emitting Diode,”Adv. Funct. Mater. (2012).
[31] Li Ping Lu, Chris E. Finlayson and Richard H. Friend,“A study of tin oxide as an election injection layer in hybrid polymer Light-emitting diodes,”Semicond. Sci. Technol. 29 (2014).