| 研究生: |
汪璞芸 Pu-Yun Wang |
|---|---|
| 論文名稱: |
共晶化合物的篩選、製備、鑑定、分子辨認及應用: Screening, Manufacturing, Characterization, Molecular Recognition and Applications of Co-crystals: Cytosine with Dicarboxylic Acids |
| 指導教授: |
李度
Tu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 胞嘧啶 、分子辨認 、光致螢光 、共晶化合物 |
| 外文關鍵詞: | co-crystal, cytosine, molecular recognition, photoluminescence |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶體材料從固體中分子的排列,及改變分子之間位置和/或相互作用,其通常對一特定固體的特性有直接影響,藉以獲得基本的物理特性。該晶體形式的多樣性驅動獨特的物化性質。固體形式的發現和設計取決於感興趣分子的性質和其在發展上面臨各種物性的挑戰。
結晶工程已發展出以自組裝現有分子的方式產生廣泛的新型固體形式,而不需破壞或形成共價鍵。此結構特徵可以被視為經由特定的相互作用進行一系列分子辨認的結果。以共晶化合物來量身訂作材料特性,已激發許多研究人員在結晶工程領域的興趣。
儘管有大量關於共晶化合物的文獻,但大部分仍主要集中在活性藥物成分的探討。本論文的目的是採用目前發展在活性藥物成分上的優勢,來創造奇特的超分子結構,並調控一方便的、有系統的、有效率的,及貼近量產條件的方法來篩選,製造和鑑定共晶化合物。胞嘧啶(cytosine)已被選定為這項研究中作為共晶化合物的主成分,和一系列增加脂肪鏈長度的二羧酸(dicarboxylic acids),HOOC(CH2)nCOOH (n= 0 至 2)被選定為共晶化合物的共同組成者。選擇溶劑微量研磨法(solvent-drop grinding)為共晶化合物的篩選方法,而採用溶液結晶法(solution crystallization)製備共晶化合物。我們製造的共晶化合物中胞嘧啶間的分子辨認和超分子異模塊(supramolecular heterosynthons)可能被用於研究胞嘧啶特有的分子印記和DNA蛋白質結合的理論設置。實驗室常見的分析工具,如PXRD,DSC,TGA,IR,OM,EA和SXD被用來了解超分子結構,並確認共晶化合物的品質。結果共產生4:1胞嘧啶-草酸二水合物、2:1胞嘧啶-丙二酸,和2:1胞嘧啶-琥珀酸的共晶化合物。之前,大多數研究共晶化合物的物理和化學性質主要來自製藥業,因此沒有提到共晶化合物關於光學性質的文獻。因此,我們希望製作共晶化合物用於光學元件上,其中具有光電特性的共晶化合物之光致發光強度,可以透過改變各種共晶化合物的共同組成者來調整,如果經由控制與優化,將可廣泛用於有機發光二極管(OLED),甚至生物發光二極管(BioLED)的製程上。
The crystalline materials obtain their fundamental physical properties from the molecular arrangement within the solids, and altering the placement and/or interactions between these molecules can usually have a direct impact on the properties of a particular solid. The crystal form diversity drive unique physicochemical properties. Solid form discovery and design depends on the nature of the molecule of interest and the type of physical property challenges faced in its development.
Crystal engineering has evolved in such a manner that it invokes self-assembly of existing molecules to generate a wide range of new solid forms without the need to break or form covalent bonds. The structural features can be regarded as the result of a series of molecular recognition events via specific interactions. Co-crystals have excited the interest of many researchers in the crystal engineering field as a way to tailor-make material properties.
Despite of a large number of literatures about co-crystals, most paper focused mainly on active pharmaceutical ingredients (APIs). The aim of this thesis is to take the full advantage of those current advancements in APIs to creat exotic supramolecular architectures and to concoct a convenient, systematic, efficient, and close-to-scale-up-conditions method for screening, manufacturing, and characterization of co-crystal. Cytosine has been chosen for this study mainly as a co-crystal component with a series of dicarboxylic acids of increasing aliphatic chain length, HOOC(CH2)nCOOH (n= 0 to 2) were selected as co-crystal co-formers. The solvent-drop grinding method was selected to be the co-crystal screening method and solution crystallization was used for co-crystal manufacturing. The molecular recognition among cytosines and the supramolecular heterosynthons of our fabricated co-crystals might be used for the investigation of theoretical sites of cytosine specific to molecular imprint and DNA-binding proteins. Common laboratory analytical tools such as PXRD, DSC, TGA, FT-IR, OM, EA, and SXD were used to understand the supramolecular architectures and to ensure the quality of co-crystals. 4:1 co-crystal of cytosine-oxalic acid dihydrate, 2:1 co-crystal of cytosine-malonic acid, and 2:1 co-crystal of cytosine-succinic acid were manufactured.
Formerly, most of those who study the physical and chemical properties of the co-crystal compound were from the pharmaceutical industry, and thus there was no literature mentioning the optical properties of co-crystals. Therefore, we hope to fabricate co-crystal compounds for optical devices in which the photoluminescence (PL) intensity of the co-crystal compounds having optoelectronic properties could be tuned by varying the kinds of co-crystal co-formers. It could widely be applied in the manufacturing process of organic light-emitting diodes (OLED), or even biologic light-emitting diodes (BioLED).
N. Schultheiss and A. Newman, “Pharmaceutical Cocrystals and Their Physicochemical Properties,” Cryst. Growth Des., 9(6), 2950-2967 (2009).
P. Vishweshwar, J. A. McMahon, J. A. Bis, and M. J. Zaworotko, “Pharmaceutical Co-Crystals,” J. Pharm. Sci., 95(3), 499-516 (2006).
J. M. Lehn, “Supramolecular Chemistry: from Molecular Information Towards Self-organization and Complex Matter,” Rep. Prog. Phys., 67(3), 249-265 (2004).
O. Almarsson and M. J. Zaworotko, “Crystal Engineering of the Composition of Pharmaceutical phases. Do Pharmaceutical Co-crystals represent a New Path to Improved Medicines?” Chem. Commun., (17), 1889-1896 (2004).
A. M. Thayer, “The Choice of Pharmaceutical Crystalline Form Can be Used to Optimize Drug Properties, and Cocrystals are Emerging as New Alternatives,” Chem. Eng. News, 85(25), 17-30 (2007).
M. C. Etter, “Hydrogen Bonds as Design Elements in Organic Chemistry,” J. Phys. Chem., 95(12), 4601-4610 (1991).
M. C. Etter, “Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds,” Acc. Chem. Res., 23(4), 120-126 (1990).
N. Blagden, D. J. Berry, A. Parkin, H. Javed, A. Ibrahim, P. T. Gavan, L. L. De Matos, and C. C. Seaton, “Current Directions in Co-crystal Growth,” New J. Chem., 32(10), 1659-1672 (2008).
M. B. Hickey, M. L. Peterson, L. A. Scoppettuolo, S. L. Morrisette, A. Vetter, Guzman, J. F. Remenar, Z. Zhang, M. D. Tawa, S. Haley, M. J. Zaworotko, and Ö. Almarsson, “Performance Comparison of a Co-crystal of Carbamazepine with Marketed Product,” Eur. J. Pharm. Biopharm., 67(1), 112–119 (2007).
A. N. Sokolov, T. Friscic, and L. R. MacGillivray, “Enforced Face-to-Face Stacking of Organic Semiconductor Building Blocks within Hydrogen-Bonded Molecular Cocrystals,” J. Am. Chem. Soc., 128(9), 2806–2807 (2006).
H. Koshima, and M. Miyauchi, “Polymorphs of a Cocrystal with Achiral and Chiral Structures Prepared by Pseudoseeding: Tryptamine/ Hydrocinnamic Acid,” Cryst. Growth Des., 1(5), 355–357(2001).
W. Cho, H. J Lee, and M. Oh, “Growth-Controlled Formation of Porous Coordination Polymer Particles,” J. Am. Chem. Soc., 130(50), 16943–16946( 2008).
A. V. Trask, and W. Jones, “Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach,” Top Curr. Chem., 254, 41-70 (2005).
H. G. Brittain, “Photoluminescence of Pharmaceutical Materials in Solid State. 4. Fluorescence Studies of Various Solvated and Desolvated Solvatomorphs of Erythromycin A,” Volume 2007 of “Reviews in Fluorescence,” 1st Ed., (Springer, New York, USA, 2009), pp. 379-392.
Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent-Dye-Doped DNA-Surfactant Complex Films,” Adv. Mater., 12(17), 1281-1283 (2000).
G. Portalone, and M. Colapietro, “Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reation,” J. Chem. Crystallogr., 39(3), 193-200 (2009).
T. Balasubramanian, P. T. Muthiah, and W. T. Robinson, “Cytosine-Carboxylate Interactions: Crystal Structure of Cytosinium Hydrogen Maleate,” Bull. Chem. Soc. Jpn., 69(10), 2919-2922 (1996).
B. Sellergren, “Imprinted Polymers with Memory for Small Molecules, Proteins, or Crystals,” Angew. Chem. Int. Ed., 39(6), 1031-1037 (2000).
C. O. Pabo, “Protein-DNA Recognition,” Annu. Rev. Biochem., 53, 293-321 (1984).
A. Sarai, and H. Kono, “Protein-DNA Recognition Patterns and Predictions,” Annu. Rev. Biophys. Biomol. Struct., 34, 379-398 (2005).
D. L. Barker, and R. E. Marsh, “The Crystal Structure of Cytosine,” Acta. Cryst., 17(12), 1581-1587 (1964).
G. A. Jeffrey, and Y. Kinoshita, “The Crystal Structure of Cytosine Monohydrate,” Acta. Cryst., 16(1), 20-28 (1963).
S. Basavoju, D. Bostrom, and S. P. Velaga, “Indomethacin-Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization,” Pharm. Res., 25(3), 530-541 (2008).
A. W. Newman and S. R. Byrn, “Solid-state analysis of the active pharmaceutical ingredient in drug products,” Drug Discovery Today, 8(19), 898-904(2003).
P. J. Haines and F. W. Wilburn, “Differential thermal analysis and differential scanning calorimetry,” Chapter 3 of “Thermal Methods of Analysis,” 1st Ed., (Blackie Academic and Professional, Scotland, England, 1995), pp. 69-114.
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7) 699-709 (2001).
. D. L. Pavia, G. M. Lampman and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 of “Introduction to Spectroscopy,” 3rd Ed., (Brooks/COLE Thomson Learning, Mississippi, USA, 2001), pp. 13-24.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-Handling Operation,” Chapter 5 of “Powder Technology Handbook,” 2nd Ed., (Marcel Dekker, New York, USA, 1997), pp. 720-730.
K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental Properties of Powder Beds,” Chapter 3 of “Powder Technology Handbook,” 2nd Ed., (Marcel Dekker, New York, USA, 1997), pp. 413-423.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-Handling Operation,” Chapter 5 of “Powder Technology Handbook,” 2nd Ed., (Marcel Dekker, New York, USA, 1997), pp. 659-661.
H. G. Brittain, “Methods for the Characterization of Ploymorphs and Solvates,”Chapter 6 of “Polymorphism in Pharmaceutical Solids,” (Marcel Dekker, New York, USA, 1999), pp. 227-271.
D. Giron, “Thermal Analysis, and Calorimetric Methods in the Characterisation of Polymorphs and Solvates,” Thermochim. Acta, 245(2), 1-59 (1995).
S. D. Clas, C. R. Dalton, and B. C. Hancock, “Differential Scanning Calorimetry: Applications in Drug Development,” Pharm. Sci. Technol. Today, 2(8), 311-320 (1999).
E. Lu, N. Rodríguez-Hornedo and R. Suryanarayanan,“A rapid thermal method for cocrystal screening,” CrystEngComm, 10(6), 665 – 668(2008).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Thermal Methods,” Chapter 31 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 798-801.
N. S. Murthy and F. Reidinger, “X-ray Analysis,” Chapter 7 of “Matericals Characterization and Chemical Analysis,” (J. P. Sibilia, Wiley-Vch, New York, USA, 1996) pp. 143-149.
T. C. Huang, “Automatic X-ray Single Crystal Structure Analysis System for Small Molecule,” The Rigaku J., 21(2), 43-46 (2004).
Y. Zhang and D. J. W. Grant, “Similarity in Structures of Racemic and Enantiomeric Ibuprofen Sodium Dehydrates,” Acta Crystallogr. C, 61(9), m435-m438 (2005).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen,” Acta Crystallogr. E: Struct. Rep. Online, 59(9), 1357-1358 (2003).
L. Kr. Hansen, G. L. Perlovich, and A. Bauer-Brandl, “Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen. corrigendum,” Acta Crystallogr. E, 62(7), e17-e18 (2006).
C. Ciacovazzo, H. L. Monaco, G. Artioli, D. viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti, “Experimental Method in X-ray Andneutron Crystallography,” Chapter 5 of “Fundamentals of Crystallography,” 2nd Ed., (Oxford university press, New York, USA, 2002) p. 336 .
J. P. Glusker, and K. N. Trueblood, “Experimental Measurement,” Chapter 4 of “Crystal Structure Analysis A Primer,” 2nd Ed., (Oxford university press, New York, USA, 1985), pp. 42-47.
. D. A. Skoog, F. J. Holler, and T. A. Nieman, “Components of Optical Instrument,” Chapter 7 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 182-183.
. A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Nuclear Magnetic Resonance Spectroscopy,” Chapter 19 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 445-464.
P. A. Tishmack, D. E. Bugay, and S. R. Byrn, “Solid-State Nuclear Magnetic Resonance Spectroscopy-Pharmaceutical Applications,” J. Pharm. Sci., 92(3), 441-474 (2003).
E. R. Andrew, “Magic Angle Spinning in Solid State N.M.R. Spectroscopy,” Phil. Trans. R. Soc. Lond. A, 299(1452), 505-520 (1981).
A. Alia, S. Ganapathy, and Huub J. M. de Groot, “Magic angle spinning (MAS) NMR: a new tool to study the spatial and electronic structure of photosynthetic complexes,” Photosynth. Res., 102(2-3), 415-425 (2009).
F. G. Vogt, J. S. Clawson, M. Strochmeir, A. J. Edwards, T. N. Pham, and S. A. Watson, “Solid-State NMR Analysis of Organic Cocrystals and Complexes,” Cryst. Growth Des., 9(2), 921-937 (2009).
D. Braga, L. Maini, G. de Sanctis, K. Rubini, F. Grepioni, M. R. Chierotti, and R. Gobetto, “Mechanochemical Preparation of Hydrogen-Bonded Adducts Between the Diamine 1,4-Diazabicyclo[2.2.2]octane and Dicarboxylic Acids of Variable Chain Length: An X-ray Diffraction and Solid-State NMR Study,” Chem. Eur. J., 9(22), 5538-5548 (2003).
H. G. Brittain, B. J. Elder, P. K. Isbester, and A. H. Salerno, “Solid-State Fluorescence Studies of Some Polymorphs of Diflunisal,” Pharm. Res., 22(6), 999-1006 (2005).
http://biosurface.memphis.edu/images/ConfigCoordDiag2.png, “Luminescence.”
T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998).
http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology”
R. E. Davis, K. A. Lorimer, M. A. Wilkowaki, and J. H. Rivers, “Studies of Phase Relationships in Cocrystal System,” ACA Transactions, 39, 41-61(2004).
D. J. Berry, C. C. Seaton, W. Clegg, R. W. Harrington, S. J. Coles, P. N. Horton, M. B. Hursthouse, R. Storey, W. Jones, T. Fris ̌c ̌ic ́, and N. Blagden, “Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients,” Cryst. Growth Des., 8(5), 1697-1712 (2008).
http://www.laboratoryequipment.com, “Factors Affecting C, H, N Micro-Analytical”
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Automated Methods of Analysis,” Chapter 33 of “Principles of Instrumental Analysis,” 5th Ed., (Thomson Learning, Mississippi, USA, 2001), pp. 844-849.
J. Grant, “Quantitative Organic Microanalysis Based on the Methods of Fritz Pregl,” J. Am. Med. Assoc., 132(1), 52(1946).
O. P. Filho, G. P. LaTorre, and L. L. Hench, “Effect of Crystallization on Apatite-layer Formation of Bioactive Glass 45S5,” J. Biomed. Mater. Res., 30(4), 509-514 (1996).
A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface Crystallization Effects on The Optical and Electric Properties of CdS Nanorods,” Nanotechnology, 16(10),2402–2406 (2005).
Y. Akpalu, L. Kielhorn, B. S. Hsiao, R. S. Stein, T. P. Russell, J. V. Egmond, and M. Muthukumar, “Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements,” Macromol., 32(3), 765-770 (1999).
H. Ahari, R. L. Bedard, C. L. Bowes, N. Coombs, O. M. Dag, T. Jiang, G. A. Ozin, S. Petrov , I. Sokolov, A. Verma, G. Vovk, and D. Young, “Effect of Microgravity on The Crystallization of a Self-assembling Layered Material,” Nature, 388(6645), 857 - 860 (1997 ).
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent Effects on the Crystallization Behavior of Milk Fat Fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000).
S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-Throughput Crystallization: Polymorphs, Salts Co-crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004).
D. Braga, and F. Grepioni, “Making Crystals from Crystals: a Green Route to Crystal Engineering and Polymorphism,” Chem. Commun., 7(29), 3635-3645(2005).
R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-Integrated Approach from High-throughput Screening to Crystallization Optimization,” J. Therm. Anal. Calorim., 73(2), 429-440(2003).
D. J. W. Grant, “Theory and Origin of Polymorphism,” Chapter 1 of “Polymorphism in pharmaceutical solids,” (Marcel Dekker, New York, USA, 1999), pp.1-21.
C. U. Yurteri, M. K. Mazumder, N. Grable, G. Ahuja, S. Trigwell, A. S. Biris, R. Sharma, and R. A. Sims, “Electrostatic Effects on Dispersion, Transport, and Deposition of Fine Pharmaceutical Powders: Development of an Experiment Method for Quantitative Analysis,” Pharticulate Sci. Tech., 20(1), 59-79(2002).
P. York, “Solid-State Properties of Powders in the Formulation and Processing of Solid Dosage Forms,” Int. J. Pharm., 14(1), 1-28(1983).
G. Portalone, and M. Colapietro, “Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reaction,” J. Chem. Crystallogr., 39(3), 193-200 (2009).
T. Balasubramanian, P. T. Muthiah, and W. T. Robinson, “Cytosine-Carboxylate Interactions: Crystal Structure of Cytosinium Hydrogen Maleate,” Bull. Chem. Soc. Jpn., 69(10), 2919-2922 (1996).
S. R. Perumalla, E. Suresh, and V. R. Pedireddi, “Nucleobases in Molecular Recognition: Molecular Adducts of Adenine and Cytosine with COOH Functional Groups,” Angew. Chem. Int. Ed., 44(47), 7752-7757 (2005).
Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and Lasing form Deoxyribonucleic Acid (DNA) Thin Doped with Sulforhodamine,” Applied Optics, 46(9), 1507-1513 (2007).
J. A. Hagen, W. Li, and A. J. Steckl, “Enhanced Emission Efficiency in Organic Light-Emitting Diodes Using Deoxyribonucleic Acid Complex as an Electron Blocking Layer,” Appl. Phys. Lett., 88(17), 1-3 (2006).
H. G. Brittain, and D. J. W. Grant, “Effect of Polymorphism and Solid-State Solvation on Solubility and Dissolution Rate,” Chapter 7 of “Polymorphism in pharmaceutical solids,” (Marcel Dekker, New York, USA, 1999), pp. 279-330.
S. N. Bhattachar, L. A. Deschenesa, and J. A. Wesleya, “Solubility: It Is Not Just for Physical Chemists,” Drug Discov. Today, 11(21-22), 1012-1018 (2006).
C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997).
D. Winn, and M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown Organic Crystals,” AlChE J., 44(11), 2501-2514 (1998).
J. W. Mullin, “Crystal Habit Modification,” Chapter 6.4 of “Crystallization,” 3rd Ed., (Butterworth-Heinemann, London, England, 1997) pp248-250.
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage from Performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001).
N. Rasenack, and B. W. Müller, “Crystal Habit and Tabletting Behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002).
M. Lahav, and L. Leiserowitz, “The Effect of Solvent on Crystal Growth and Crystal Habit,” Chem. Eng. Sci., 56(7), 2245-2253 (2001).
J. Bernstein, R. J. Davey, and J. Henck, “Concomitant Polymorphs,” Angew. Chem. Int. Ed., 38(23), 3440-3461 (1999).
P. T. Cardew, and R. J. Davey, “The Kinetics of Solvent-Mediated Phase Transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985).
K. Pack, J. M. B. Evans, and A. S. Myerson, “Determination of Solubility of Polymorphs Using Differential Scanning Calorimetry,” Cryst. Growth. Des., 3(6), 991-995 (2003).
T. Threfall, “Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
L. X. Yu, M. S. Furness, A. Raw, K. P. Woodland Outlaw, N. E. Nashed, E. Ramos, S. P. F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. Holcombe Jr., Y. Chiu and A. S. Hussain, “Scientific Considerations of Pharmaceutical Solid Polymorphism in Abbreviated New Drug Applications,” Pharm. Res., 20(4), 531-536 (2004).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30(10), 72-92 (2006).
D. Gao, and J. H. Raytting, “Use of Solution Calorimetry to Determine the Extent of Crystallinity of Drugs and Excipients,” Int. J. Pharm., 151(2), 183-192 (1997).
J. Schiedt, R. Weinkauf, D. M. Neumark, and E. W. Schlag, “Anion Spectroscopy of Uracil, Thymine and the Amino-Oxo and Amino-Hydroxy Tautomers of Cytosine and Their Water Clusters,” Chem. Phys., 239(1-3), 511-524 (1998).
D. L. Barker, and R. E. Marsh, “The Crystal Structure of Cytosine,” Acta. Cryst. 17(12), 1581-1587 (1964).
G. A. Jeffrey, and Y. Kinoshita, “The Crystal Structure of Cytosine Monohydrate,” Acta. Cryst. 16(1), 20-28 (1963).
P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’ Sullivan, and D. O’ Grady, “A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes,” Org. Process Res. Dev., 9(3), 348-355 (2005).
C. P. Mark Roelands, S. Jiang, M. Kitamura, J. H. ter Horst, H. J. M. Kramer, and P. J. Jansens, “Antisolvent Crystallization of the Polymorphs of L-Histidine as a Function of Supersaturation Ratio and of Solvent Composition,” Cryst. Growth Des., 6(4), 955-963 (2006).
N. Nonoyama, K. Hanaki, and Y Yabuki, “Constant Supersaturation Control of Antisolvent-Addition Batch Crystallization,” Org. Process Res. Dev., 10 (4), 727–732 (2006).
Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal Morphology Engineering by"Tailor-Made" Inhibitors; a New Probe to Fine Intermolecular Interactions,” J. Am. Chem. Soc., 107(11), 3111-3122 (1985).
T. Togkalidou, R. D. Braatz, B. K. Johnson, O. Davidson, and A. Andrews, “Experimental Design and Inferential Modeling in Pharmaceutical Crystallization,” AIChE Journal, 47(1), 160-168 (2001).
H. G. Ibahim, F. Pisano, and A. Bruno, “Polymorphism of Phenylbutazone: Properties and Compressional Behavior of Crystals,” J. Pharm. Sci., 66(5), 669-673 (1977).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Major Spectra-Structure Correlations by Spectral Regions,” Chapter 13 of “Introduction to Infrared and Raman Spectroscopy,” 3rd Ed., (Academic press Inc, New York, USA, 1991), p. 394.
M. Klussmann, T. Izumi, P. J. A. White, A. Armstrong, G. D. Blackmond, “Emergence of Solution-Phase Homochirality via Crystal Engineering of Amino Acids,” J. Am. Chem. Soc., 129(24), 7657-7660 (2007).
P. Vishweshwar, J. A. McMahon, J. A. Bis, and M. J. Zaworotko, “Pharmaceutical Co-Crystals,” J. Pharm. Sci., 95(3), 499-516 (2006).
G. P. Stahly, “A Survey of Cocrystals Reported Prior to 2000,” Cryst. Growth Des., 9(10), 4212-4229 (2009).
C. L. Cooke, and R. J. Davey, “On the Solubility of Saccharinate Salts and Cocrystals,” Cryst. Growth Des., 8(10), 3483-3485 (2008).
M. Viertelhaus, R. Hilfiker, F. Blatter, and M. Neuburger, “Piracetam Co-Crystals with OH-Group Functionalized Carboxylic Acids,” Cryst. Growth Des., 9(5), 2220-2228 (2009).
D. J. Good, and N. Rodríguez-Hornedo, “Solubility Advantage of Pharmaceutical Cocrystals,” Cryst. Growth Des., 9(5), 2252-2264 (2009).
C. O. Pabo, “Protein-DNA Recognition,” Annu. Rev. Biochem., 53, 293–321(1984).
A. Fayasankar, A. Somwangthanaroj, Z. J. Shao, and N. Rodríguez-Hornedo, “Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase,” Pharm. Res., 23(10), 2381-2392 (2006).
M. C. Etter, “Hydrogen Bonds as Design Elements in Organic Chemistry,” J. Phys. Chem., 95(12), 4601-4610 (1991).
S. Basavoju, D. Bostrom, and S. P. Velaga, “Indomethacin-Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization,” Pharm. Res., 25(3), 530-541 (2008).
D. P. McNamara, S. L. Childs, J. Giordano, A. Iarriccio, J. Cassidy, M. S. Shet, R. Mannion, E. O’Donnell, and A. Park., “Use of A Glutaric Acid Cocrystal to Improve Oral Bioavailability of A Low Solubility API,” Pharm. Res., 23(8), 1888-1897 (2006).
J. H. ter Horst, M. A. Deij, and P. W. Cains, “Discovering New Co-Crystals,” Cryst. Growth Des., 9(3), 1531–1537(2009).
G. G. Z. Zhang, R. F. Henry, T. B. Borchardt, and X. Lou, “Efficient Co-crystal Screening Using Solution-Mediated Phase Transformation,” J. Pharm. Sci., 96(5), 990–995 (2007).
A. V. Trask, W. D. Samuel Motherwell, and W. Jones, “Solvent-Drop Grinding: Green Polymorph Control of Co-crystallization,” Chem. Commun., (7), 890–891 (2004).
D. R. Weyna, T. Shattock, P. Vishweshwar, and M. J. Zaworotko, “Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs. Slow Evaporation,” Crys. Growth Des., 9(2), 1106–1123 (2009).
E. Gagniere, D. Mangin, F. Puel, C. Bebon, J. P. Klein, O. Monnier, and E. Garcia, “Cocrystal Formation in Solution: In Situ Solute Concentration Monitoring of the Two Components and Kinetic Pathways,” Cryst. Growth Des., 9(8), 3376–3383 (2009).
T. Fris ̌c ̌ic ́, S. L. Childs, S. A. A. Rizvi, and W. Jones, “The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubility-Based Approach for Predicting Cocrystallization Outcome,” CrystEngComm, 11(3), 418–426 (2009).
D. J. Berry, C. C. Seaton, W. Clegg, R. W. Harrington, S. J. Coles, P. N. Horton, M. B. Hursthouse, R. Storey, W. Jones, T. Fris ̌c ̌ic ́, and N. Blagden, “Applying Hot-Stage Microscopy to Co-crystal Screening: A Study of Nicotinamide with Seven Active
Pharmaceutical Ingredients,” Cryst. Growth Des. 8(5), 1697– 1712 (2008).
E. Lu, N. Rodríguez-Hornedo, and R. Suryanarayanan, “A Rapid Thermal Method for Cocrystal Screening,” CrystEngComm, 10(6), 665–668 (2008).
A. R. Ling and J. L. Baker, “Halogen derivatives of quinine. Part III. Derivatives of quinhydrone.,” J. Chem. Soc., 63, 1314-1327 (1893).
A. V. Trask, N. Shan, W. D. S. Motherwell, W. Jones, S. Feng, R. B. H. Tan, and K. J. Carpenter, “Selective Polymorph Transformation via Solvent-drop Grinding,”Chem. Commun., (7), 880-882 (2005).
A. V. Trask, J. van de Streek, W. D. Samuel Motherwell, and W. Jones, “Achieving Polymorphic and Stoichiometric Diversity in Co-crystal Formation: Importance of Solid-State Grinding, Powder X-ray Structure Determination, and Seeding,” Crys. Growth Des., 5(6), 2233-2241 (2005).
N. Blagden, D. J. Berry, A. Parkin, H. Javed, A. Ibrahim, P. T. Gavan, L. L. De Matos and C. C. Seaton, “Current Directions in Co-crystal Growth,” New J. Chem., 32(10), 1659-1672 (2008).
N. Shan, F. Toda, and W. Jones, “Mechanochemistry and Co-crystal Formation: Effect of Solvents on Reaction Kinetics,” Chem. Commun., (20), 2372-2373 (2002).
T. Fris ̌c ̌ic ́, and W. Jones, “Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding,” Crys. Growth Des., 9(3), 1621-1637 (2009).
A. V. Trask, W. D. Samuel Motherwell, and W. Jones, “Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration,” Crys. Growth Des., 5(3), 1013-1021 (2005).
A. V. Trask, and W. Jones, “Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach,” Top Curr. Chem., 254, 41-70 (2005).
M. Perakyla, “A Model Study of the Enzyme-Catalyzed Cytosine Methylation Using ab Initio Quantum Mechanical and Density Functional Theory Calculations: pKa of the Cytosine N3 in the Intermediates and Transition States of the Reaction,” J. Am. Chem. Soc., 120(49), 12895-12902 (1998).
M. A. Zolfigol, “An Efficient and Chemoselective Method for Oximination of β-Diketones Under Mild and Heterogeneous Conditions,” Molecules, 6(8), 694-698 (2001).
T. J. Strathmann, and S. C. B. Mayneni, “Speciation of Aqueous Ni(II)-Carboxylate and Ni(II)-Fulvic Acid Solutions: Combined ATR-FTIR and XAFS analysis,” Geochim. Cosmochim. Acta, 68(17), 3441-3458 (2004).
H. Thakuria, B. M. Borah, A. Pramanik, and G. Das, “Solid State Synthesis and Hierarchical Supramolecular Self-assembly of Organic Salt Cocrystals,” J. Chem. Crystallogr., 37(12), 807-816 (2007).
F. G. Vogt, J. S. Clawson, M. Strohmeier, A. J. Edwards, T. N. Pham, and S. A. Watson, “Solid-State NMR Analysis of Organic Cocrystals and Complexes,” Cryst. Growth Des., 9(2), 921-937 (2009).
S. L. Child, G. Patrick Stahly, and A. Park, “The Salt-Cocrystal Continuum: The Influence of Crystal Structure on Ionization State,” Mol. Pharmaceutics, 4(3), 323-338 (2007).
S. L. Johnson, and K. A. Rumon, “Infrared Spectra of Solid 1:1 Pyridine-Benzoic Acid Complexes; the Nature of the Hydrogen Bond as a Function of the Acid-Base Levels in the Complex,” J. Phys. Chem., 69(1), 74-86 (1965).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Carbonyl Compounds,” Chapter 9 of “Introduction to infrared and Raman spectroscopy,” 3rd Ed., (Axademic Press Inc., New York, USA, 1990), pp. 315,318.
G. Smith, D. E. Lynch, K. A. Byriel, and C. H. L. Kennard, “The Utility of 4-Aminobenzoic Acid in Promotion of Hydrogen Bonding in Crystallization Process: the Structures of the Cocrystals with Halo and Nitro Substituted Aromatic Compounds, and the Crystal Structures of the Adducts with 4-Nitroniline (1:1), 4-(4-Nitrobenzyl)pyridine (1:2), and (4-Nitrophenyl)acetic acid (1:1),” J. Chem. Crystallogr., 27(5), 307-317 (1997).
C. B. Aakeroy, J. Desper, and M. E. Fasulo, “Improving Success Rate of Hydrogen-Bond Driven Synthesis of Co-crystals,” CystEngComm, 8(8), 586-588 (2006).
N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Amines, C=N, and N=O Compounds,” Chapter 11 of “Introduction to infrared and Raman spectroscopy,” 3rd Ed., (Axademic Press Inc., New York, USA, 1990), pp, 340,388.
K. Ataka, and M. Osawa, “In Situ Infrared Study of Cytosine Adsorption on Gold Electrodes,” J. Electroanal. Chem., 460(1), 188-196 (1999).
R. Gobetto, C. Nervi, E. Valfre, M. R. Chierotti, D. Braga, L. Maini, F. Grepioni, R. K. Harris, and P. Y. Ghi,“1H MAS, 15N CPMAS, and DFT Investigation of Hydrogen-Bonded Supramolecular Adducts between the Diamine 1,4-Diazabicyclo-[2.2.2]octane and Dicarboxylic Acids of Variable Chain Length,” Chem. Mater., 17(6), 1457-1466 (2005).
N. Schultheiss, and A. Newman, “Pharmaceutical Cocrystals and Their Physicochemical Properties,” Cryst. Growth Des., 9(6), 2950-2967 (2009).
B. Furtig, C. Richter, J. Wohnert, and H. Schwalbe, “NMR spectroscopy of RNA,” ChemBioChem, 4(10), 936-962 (2003).
J. S. Clawson, F. G. Vogt, J. Brum, J. Sisko, D. B. Patience, W. Dai, S. Sharpe, A. D. Jones, T. N. Pham, M. N. Johnson, and R. C. P. Copley, “Formation and Characterization of Crystals Containing a Pleuromutilin Derivative, Succinic Acid and Water,” Cryst. Growth Des., 8(11), 4120-4131 (2008).
E. Breitmaier, and W. Voelter, “Carbonyl Compounds,” Chapter 4 of “Carbon-13 NMR spectroscopy,” 3rd Ed., (VCH, New York, USA, 1987), p.226.
K. Bouchmella, S. G. Dutremez, B. Alonso, F. Mauri, and C. Gervais, “1H, 13C, and 15N Solid-State NMR Studies of Imidazole- and Morpholine-Based Model Compounds Possessing Halogen and Hydrogen Bonding Capabilities,” Cryst. Growth Des., 8(11), 3941-3950 (2008).
R. Gobetto, C. Nervi, M. R. Chierotti, D. Braga, L. Maini, F. Grepioni, R. K. Harris, and P. Hodgkinson, “Hydrogen Bonding and Dynamic Behavior in Crystals and Polymorphs of Dicarboxylic-Diamine Adducts: A Comparison between NMR Parameters and X-ray Diffraction Studies,” Chem. Eur. J., 11(24), 7461-7471 (2005).
J. Florian, V. Baumruk, and J. Leszczynski, “IR and Raman Spectra, Tautomeric Stabilities, and Scaled Quantum Mechanical Force Fields of Protonated Cytosine,” J. Phys. Chem., 100(13), 5578-5589 (1996).
W. Saenger, “Forces Stabilizing Associations Between Bases: Hydrogen Bonding and Base Stacking,” Chapter 6 of “Principles of Nucleic Acid Structure,” (Springer-Verlag, New York, USA, 1984), pp. 118-124.
A. Jayasankar, L. Sreenivas Reddy, S. J. Bethune, and N. Rodríguez-Hornedo, “Role of Cocrystal and Solution Chemistry on the Formation and Stability of Cocrystals with Different Stoichiometry,” Cryst. Growth Des., 9(2), 889-897 (2009).
S. J. Nehm, B. Rodríguez-Spong, and N. Rodríguez-Hornedo, “Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation,” Cryst. Growth Des., 6(2), 592-600 (2006).