| 研究生: |
謝佳昇 Hsieh Chia-Sheng |
|---|---|
| 論文名稱: |
準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究 Process development of soft proton-exchangedwaveguides in periodically poled MgO:LiNbO3 forsecond harmonic generations |
| 指導教授: |
陳彥宏
Yen -Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 二倍頻 、軟質子交換波導 、準相位匹配 |
| 外文關鍵詞: | second harmonic generation, soft proton exchange, quasi phase-matching |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微型化的積體雷射元件有著非常多的應用,例如藍光雷射光源對於生
物醫療、雷射列印、光學儲存與讀取以及量測系統等有許多應用;綠光雷
射光源在資料印刷,雷射顯示器,精密加工,高解析度印刷器等等領域也有諸
多應用。
本研究選用5mol.%鎂摻雜鈮酸鋰,利用該材料本身的高非線性係數及
高抗光折變損害等優良特性製作波長轉換元件。我們在鎂掺雜鈮酸鋰中做
上軟質子交換波導並利用準相匹配技術做二倍頻,在實驗上以1550nm、
1064nm、808nm 三種波段當基頻光,並做上三種不同的準相位匹配二倍頻週
期在不同鎂掺雜鈮酸鋰軟質子交換波導中,各產生波段為775nm 的紅光、
532nm 之綠光、404nm 之藍光。
在理論模擬上,我們成功利用擴散離子交換式(ion exchange equation)
建立起軟質子交換波導的擴散模型,其擴散分布曲線與實際的量測結果有
一非常相似的分布。
在實驗的量測上,我們成功做出軟質子交換波導,並利用XRD 繞射儀
確定為單一晶相,並利用Fabry-perot 的方法量得其傳播損耗約為
1.4dB/cm。在藍光二倍頻,量得其藍光輸出約為0.2mw,其轉換效率大約
48%/W;在紅光二倍頻,量到的紅光輸出約為320nw,其轉換效率約為
0.2%/W;在綠光二倍頻,並無法找到相位匹配的溫度。
綠光二倍頻相位匹配頻寬經理論計算後,只有不到一度的範圍是找不
到相位匹配的主因。而紅光二倍頻轉換效率低落,則是因為基頻光與倍頻
光模態疊加積分過小之故。
Integrated miniaturized laser components has a lot of applications,such as
blue laser light source for bio-medical、laser printing、optical storage and
retrieval and measurement systems have many applications; green laser light
source in the data Printing、laser displays、precision machining、high-resolution
printing devices also has many applications。
we try to develop a fabrication method of a quasi-phase-matching (QPM)
second-harmonic generator in a low-loss soft proton exchange
optical-waveguide for achieving a high-efficiency laser based on a 5 mol. %
MgO:LiNbO3 characterized by high optical nonlinearity and high optical
damage resistance。In the experiment,light source with three different
wavelength in 1550nm、1064、808nm incident three different MgO:LN SPE
waveguide to generate second harmonic generation in 775nm、532nm、404nm
three different light。
In the theoretical simulation,we have successfully used diffusion-type ion
exchange (ion exchange equation) to establish the soft proton exchange
waveguide diffusion model,the diffusion distribution curve and the actual
measured results have a very similar distribution。
III
In the experimental measurements,we have successfully made the soft
proton exchange waveguide,using XRD diffraction identified as a single
phase,and the methods used Fabry-perot to measure propagation loss is about
1.4dB/cm。In the Blue light measurement,the maximum blue light output is
about 0.2mw and the conversion efficiency is about 48% / W; second harmonic
in the red light, the red light measurement,the maximum red light output is
about 320nw and the conversion efficiency is about 48% / W; in the green light
measurement,the phase matching temperature can not be found。
SHG temperature phase-matching bandwidth in green light is too small to
be found in the experiment by the theoretical calculation。The reason of the low
conversion efficiency in red light generation due to the bad mode overlapping
integral between the fundamental frequency and second harmonic frequency。
[1.1] Maiman, T. H., Phys. Rev. Letters, 4, 564 (1960).
[1.2] P.A. Franken, et al, Physical Review Letters 7, p. 118 (1961)
[1.3] LE Myers, GD Miller, RC Eckardt, MM Fejer, RL … - Optics …, 1995 - opticsinfobase.org
[1.4]. S. E. Miller, “Integrated Optics : an introduction, ” Bell. Syst. Tech. J.,48, p2059-2069 (1969)
[1.5] R. S. Weis and T. K. Gaylor,,” Lithium Niobate: Summary of Physical Properties” Appl. Phys. A 37, 191-203 (1985) Applied
[1.6] J.R. Schwesyg • M.C.C. Kajiyama • M. Falk • D.H. Jundt • K. Buse • M.M. Fejer Appl Phys B (2010) 100: 109–115
[1.7] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 (1982).
[1.8] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[1.9] Takumi Fujiwara et al Appl. Phys. Lett. Vol.61 No.7 1992
[1.10] OPTICS LETTERS / Vol. 23, No. 13 / July 1, 1998
[1.11] Y. Furukawa, K. Kitamura, S. Takekawa, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett., 23, pp1892-1894(1998).
[1.12] o. gayer1, z. sacks2 e. galun2 a. arie1 “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3” Appl. Phys. B 91, 343–348 (2008)
[13] Photonics Industry & Technology Development Association
Sep 2000
[14] Photonics Industry & Technology Development Association Jan 2000
[2.1-1] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[2.1-2] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan,“Interactions between light waves in a nonlinear dielectric.”, Phys. Rev., Vol. 127, 1962
[2.1-3] L. E. Myers,* R. C. Eckardt, M. M. Fejer, and R. L. Byer “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3” J. Opt. Soc. Am. B/Vol. 12, No. 11/November 1995
[2.2-1]R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., 25, p458-460 (1974)
[2.2-2] José Manuel M. M. de Almeida , “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3” Optical Engineering 46_6_, 064601 _June 2007_
[2.3-3] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 (1982).
[2.2-4] “Guided-to-radiation polarization mode conversion in electro-optic PPLN APE waveguides“中央大學光電科學研究所碩士論文, 鄧聖龍, 中華民國九十七年七月
[2.2-5] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics., 2, p187-196 (1996).
[2.2-6] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics.,vol.2,pp187-196(1996)
[2.2-7] L. Chanvillard, P. Aschie´ ri, P. Baldi,a) D. B. Ostrowsky, and M. de Micheli “Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions” APPLIED PHYSICS LETTERS VOLUME 76, NUMBER 9 28 FEBRUARY 2000
[2.2-8] K. El Hadi , P. Baldi , M.P. De Micheli , D.B. Ostrowsky. ,Yu.N. Korkishko , V.A. Fedorov , A.V. Kondrat’ev, “Ordinary and extraordinary waveguides realized by reverse proton exchange on LiTaO,” Optics Communications 140 (1997) 23-26
[2.2-9] Tomoya Sugita, Kiminori Mizuuchi, Yasuo Kitaoka, and Kazuhisa Yamamoto ,” 31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide
by frequency doubling of an AlGaAs laser diode”, OPTICS LETTERS / Vol. 24, No. 22 / November 15, 1999
[2.2-10] Yuri Korkishko, Vyacheslav Fedorov, Sergey Kostritskii, Evgeny Maslennikov, Marina Frolova, Alexander Alkaev “Optical and Structural Properties of Proton Exchanged MgO:LiNbO3 waveguides
[2.2-11]Sandeep T,Vohra and Alan R. Mickelson “diffusion characteristic and waveguiding properties of proton-exchange and anneal LiNbO3 channel waveguide” J. Appl. Phys. 66 (11),December 1989
[2.3-1] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[2.4-1]Clifford R. Pollock “integrated photonics “school of electrical and computer engineering cornell university
[3.1-1] D. A. Bryan, Robert Gerson, H. E. Tomaschke, ”Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.,44,p847-849(1984)
[3.1-2] Y. Ishigame, T. Suhara, and H. Nishihara, ”LiNbO3 waveguide second-harmonic generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., vol.16, p375-377(1991)
[3.1-3] [26] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of Laser diode light in a lithium niobate channel waveguide,” IEEE Photon Techonol.Lett.,vol.1,p316-318(1989)
[3.1-4] [27] M. Yamada, N. Nada, M. Saitoh and K. Watanabe,”First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.,vol.62, p435-436(1993)
[3.1-5] Alan. C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta,”Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett.,vol.60, p2828-2830(1992)
[3.1-6]余兆陞,”以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究”中央大學碩士論文,DOP(2007)
[3.1-7] H.Ishizuki, I. Shoji, and T. Taira, ”Periodically poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.,vol.82, p4062-4064(2003)
[4.1-1] Yuri Korkishko, Vyacheslav Fedorov, Sergey Kostritskii, Evgeny Maslennikov, Marina Frolova, Alexander Alkaev “Optical and Structural Properties of Proton Exchanged MgO:LiNbO3 waveguides
[4.1-2] R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B, 36, p143-147 (1985)
[4.1-3]” Active multi-channel narrowband wavelength filters and mode converters in Ti:PPLN waveguides”中央大學光電科學研究所碩士論文, 黃俊育, 中華民國九十五年十月
[4.2-1] J.R. Schwesyg • M.C.C. Kajiyama • M. Falk • D.H. Jundt • K. Buse • M.M. Fejer Appl Phys B (2010) 100: 109–115