| 研究生: |
田洛豪 Luo-Hao Tien |
|---|---|
| 論文名稱: |
應用資料科學方法進行醫療手術執行時間預測之研究: 一個支持向量迴歸模型的方法 A Support Vector Regression Method for Surgical Case Duration Prediction Model |
| 指導教授: |
呂俊德
Jun-Der Leu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 手術室 、手術執行時間 、支持向量回歸 、機器學習 |
| 外文關鍵詞: | Operating room, Surgical case duration, Support vector regression, Machine learning |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫院手術室是醫院裡相當重要的資產,並且手術室的時間管理,對於病患滿意度、員工滿意度或經濟上的指標有重大的影響力。而在相關研究發現對於使用機器學習方法進行手術室管理具有許多潛力,特別是手術執行時間的預測上。故本研究致力於改善手術執行時間預測之方法研究。
本研究運用支持向量迴歸,以台灣某醫學中心之手術資料,建構各科別手術執行時間的預測模型,結果發現在多數外科,麻醉因素有極高的重要性,而病患是否住院,可以作為所有科別共同的手術執行時間預測因子。另外,在模型比較上,無調整參數的支持向量迴歸模型比多元線性迴歸模型,適用於更多科別,特別是平均手術時間高且手術時間標準差大的科別,其平均誤差時間縮短了3分鐘。據此研究結果,院方可運用此模型當作醫務管理中手術排程的參考或是醫療過程手術室時間管理的基礎。
For a hospital, the operating room is a very crucial asset. Time management of the operating room especially has a significant influence on patient satisfaction, employee satisfaction, or economic indicators. Previous researches have indicated that using machine learning methods to improve the management of the operating room has great potentials, especially in the prediction of surgical case duration. So, this research aims at improving the methods of the prediction of surgical case duration.
Support vector regression is used in the research to construct a surgical case duration prediction model based on the surgical data from various departments of a medical center in Taiwan. The results show that anesthesia factors is extremely important for most surgical operations, and hospitalization is one of the common predictors to all departments. Besides, in model comparison, the support vector regression model without adjustment of parameters is more suitable than the multiple linear regression model for most departments; especially for those with high average case duration and large standard deviation of case duration; Based on the research, the average error duration is shortened by 3 minutes. According to the results of the research, this model can be applied to surgical scheduling of medical management, or used as the basis for the time management of operating rooms.
Awad, M., & Khanna, R. (2015). Efficient learning machines : Theories, concepts, and applications for engineers and system designers. https://doi.org/10.1007/978-1-4302-5990-9
Baker, K., Sun, H., Harman, A., Poon, K., & Rathmell, J. P. (2016). Clinical performance scores are independently associated with the American Board of Anesthesiology certification examination scores. Anesthesia & Analgesia, 122(6), 1992-1999.
Bellini, V., Guzzon, M., Bigliardi, B., Mordonini, M., Filippelli, S., & Bignami, E. (2020). Artificial intelligence: A new tool in operating room management. Role of machine learning models in operating room optimization. Journal of Medical Systems, 44(1), 20-29.
Bellini, V., Maestroni, U., & Bignami, E. (2019). Surgical block scheduling controlled by a machine: Reality or science fiction?. Journal of Medical Systems, 43(3), 1-2.
Bhatt, A. S., Carlson, G. W., & Deckers, P. J. (2014). Improving operating room turnover time: A systems based approach. Journal of Medical Systems, 38(12), 148-155.
Chen, Y., Gabriel, R. A., Kodali, B. S., & Urman, R. D. (2016). Effect of anesthesia staffing ratio on first-case surgical start time. Journal of Medical Systems, 40(5), 115-120.
Cheng, K., & Lu, Z. (2018). Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression. Computers & Structures, 194(1), 86-96.
Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1), 113-126.
Clarke, B., Fokoue, E., & Zhang, H. H. (2009). Principles and theory for data mining and machine learning. https://doi.org/10.1007/978-0-387-98135-2
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/ correlation analysis for the behavioral sciences (3rd ed.). Hillsdale, NJ: Lawrence Erlbaum.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
Devi, S. P., Rao, K. S., & Sangeetha, S. S. (2012). Prediction of surgery times and scheduling of operation theaters in optholmology department. Journal of Medical Systems, 36(2), 415-430.
Dinuzzo, F., Neve, M., Nicolao, G. D., & Gianazza, U. P. (2007). On the representer theorem and equivalent degrees of freedom of SVR. Journal of Machine Learning Research, 8(10), 2467-2495.
Drucker H., Burges C.J.C., Kaufman L., Smola A., & Vapnik V. (1997). Support vector regression machines. In Mozer M.C., Jordan M.I., & Petsche T. (Eds.), Advances in Neural Information Processing Systems 9 (pp. 155-161). Cambridge, MA: MIT Press. Retrieved from https://papers.nips.cc/paper/1238-support-vector-regression-machines
Dupont, F. W., Tung, A., Shahul, S. S., Pohlman, A., Joseph, S., Gottlieb, O., ... & Cutter, T. W. (2019). Transport of critically ill patients by the anesthesia versus the intensive care unit service: A before–after study of operating room workflows. Anesthesia & Analgesia, 129(3), 671-678.
Edelman, E. R., van Kuijk, S. M., Hamaekers, A. E., de Korte, M. J., van Merode, G. G., & Buhre, W. F. (2017). Improving the prediction of total surgical procedure time using linear regression modeling. Frontiers in Medicine, 4(1), 85-90.
Fairley, M., Scheinker, D., & Brandeau, M. L. (2019). Improving the efficiency of the operating room environment with an optimization and machine learning model. Health Care Management Science, 22(4), 756-767.
Ferschl, M. B., Feiner, J., Vu, L., Smith, D., & Rollins, M. D. (2020). A comparison of spinal anesthesia versus monitored anesthesia care with local anesthesia in minimally invasive fetal surgery. Anesthesia & Analgesia, 130(2), 409-415.
Fong, A. J., Smith, M., & Langerman, A. (2016). Efficiency improvement in the operating room. Journal of Surgical Research, 204(2), 371-383.
Han, J., Pei, J., & Kamber, M. (2012). Data mining: Concepts and techniques (3rd ed.). San Francisco, CA, USA: Elsevier.
Johannes, M., Brase, J. C., Fröhlich, H., Gade, S., Gehrmann, M., Fälth, M., ... & Beißbarth, T. (2010). Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics, 26(17), 2136-2144.
Mason, S. E., Nicolay, C. R., & Darzi, A. (2015). The use of lean and six sigma methodologies in surgery: A systematic review. The Surgeon, 13(2), 91-100.
Paulson, D.S. (2006). Handbook of regression and modeling: Applications for the clinical and pharmaceutical industries. New York, NY: Chapman & Hall, CRC.
Rambourg, J., Gaspard-Boulinc, H., Conversy, S., & Garbey, M. (2019). A continuum of interfaces to engage surgical staff in efficient collaboration. Journal of Medical Systems, 43(7), 184-192.
Rebala, G., Ravi, A., & Churiwala, S. (2019). An introduction to machine learning. https://doi.org/10.1007/978-3-030-15729-6
ShahabiKargar, Z., Khanna, S., Good, N., Sattar, A., Lind, J., & O’Dwyer, J. (2014). Predicting procedure duration to improve scheduling of elective surgery. In P. Duc-Nghia & P. Seong-Bae, (Eds.), Lecture Notes in Computer Science: Vol. 8862. PRICAI 2014: Trends in Artificial Intelligence (pp. 998-1009). Switzerland: Springer International Publishing. doi:10.1007/978-3-319-13560-1_86
Shahabikargar, Z., Khanna, S., Sattar, A., & Lind, J. (2017). Improved prediction of procedure duration for elective surgery. Health Technology and Informatics, 239(1), 133-138.
Simard, M., Sirois, C., & Candas, B. (2018). Validation of the combined comorbidity index of Charlson and Elixhauser to predict 30-day mortality across ICD-9 and ICD-10. Medical Care, 56(5), 441-447.
Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222.
Soh, K. W., Walker, C., O’Sullivan, M., & Wallace, J. (2020). An evaluation of the hybrid model for predicting surgery duration. Journal of Medical Systems, 44(2), 42-57.
Steinwart, I., Hush, D., & Scovel, C. (2006). An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Transactions on Information Theory, 52(10), 4635-4643.
Stepaniak, P. S., Heij, C., & De Vries, G. (2010). Modeling and prediction of surgical procedure times. Statistica Neerlandica, 64(1), 1-18.
Tsai, M. H., Hall, M. A., Cardinal, M. S., Breidenstein, M. W., Abajian, M. J., & Zubarik, R. S. (2020). Changing anesthesia block allocations improves endoscopy suite efficiency. Journal of Medical Systems, 44(1), 1-9.
Tuwatananurak, J. P., Zadeh, S., Xu, X., Vacanti, J. A., Fulton, W. R., Ehrenfeld, J. M., & Urman, R. D. (2019). Machine learning can improve estimation of surgical case duration: A pilot study. Journal of Medical Systems, 43(3), 44-50.
Zhao, B., Waterman, R. S., Urman, R. D., & Gabriel, R. A. (2019). A machine learning approach to predicting case duration for robot-assisted surgery. Journal of Medical Systems, 43(2), 32-39.
陳姵君,「醫院手術室效能影響因素與效能評估方法之發展」,國立中央大學,碩士論文,民國 102 年。