跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉柏廷
Po-ting Liu
論文名稱: 極小孔徑陽極氧化鋁模板之製備及在矽基材上生成大面積規則排列氧化鋁模板及奈米點陣列之研究
Synthesis of Freestanding AAO Template with Ultra-small Pore Size, and Fabrication of Well-ordered Thin AAO Templates and Nanodots Array on Si Substrate
指導教授: 鄭紹良
Shao-liang Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 陽極氧化鋁奈米點陣列
外文關鍵詞: nanodots array, AAO
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之內容主要分成極小孔徑陽極氧化鋁奈米模板與矽基規則陽極氧化鋁奈米模板之製備兩部分,並針對其孔洞排列、孔徑大小與分佈進行量測分析。在製備出矽基材上大面積規則排列陽極氧化鋁奈米模板後,利用此模板製備兩種零維奈米點陣列,並對各奈米點之形貌與晶體結構進行分析鑑定。
    在極小孔徑陽極氧化鋁奈米模板的部分,我們成功地利用高純度鋁片以兩次陽極氧化處理法製備出孔徑可調變 ( 10 - 60 nm ) 之陽極氧化鋁,並經由移除鋁片與氧化鋁孔道底部之阻障層得到極小孔徑陽極氧化鋁模板 ( 平均孔徑大小 < 10 nm ) ,此極小孔徑奈米模板相信將可用於大量製備極細一維奈米線陣列結構。
    在矽晶基材上製備低深寬比之規則陽極氧化鋁奈米模板方面,本研究結合奈米球微影術與電漿蝕刻技術,在矽基鋁薄膜上預置遮罩並定義鋁薄膜之反應區域進行一次陽極氧化處理,可成功地製備出大面積規則有序排列之矽基氧化鋁奈米薄膜,並經由磷酸蝕刻底部阻障層後可得到大面積孔洞規則排列且孔徑可由奈米球遮罩調變之矽基氧化鋁奈米模板。應用此製程移除表層之氧化鋁模板,可得到大面積規則有序排列之奈米點陣列,經 AFM、TEM 與 SAED 鑑定後為非晶形之氧化矽奈米點陣,其高度約為 32 - 40 nm 。此外我們也使用上述所製備之低深寬比規則氧化鋁模板結合電子槍蒸鍍鎳金屬,經移除氧化鋁模板後可得到大面積規則有序排列之奈米點陣列,經 TEM 與 SAED 鑑定分析可知其為多晶之鎳金屬奈米點陣列結構。


    In this study, we show the successfully fabrication of two types of anodic aluminum oxide (AAO) templates. One is the free standing AAO nanotemplate with ultra-small pore size (<10nm), and the other is the thin AAO template with 2-D periodic nanopore structure on Si substrate.
    To fabricate free standing AAO nanotemplates, high purity Al foils were used as the start materials, and a two-step anodizing process was employed. In this works, the pore diameters of AAO nanotemplates can be tuned from 9 to 60 nm by varying the electrolyte composition, applied voltage, and processing temperature. The obtained AAO nanotemplates can be extended to fabricate a large amount of ultra-narrow nanowires.
    The present study also demonstrated that the thin AAO templates with well-ordered nanopore arrays were successfully fabricated on (001)Si substrates by employing the nanosphere lithography technique and selective anodic oxidation process. The pore diameter and the interspacing can be readily controlled by adjusting the diameters of the colloidal nanospheres and the anodic etching conditions. After removal of the AAO templates, large-area periodic SiOx nanodots array was found to form on Si substrate. Furthermore, the hexagonally arrayed porous AAO membrane can be used as the template for fabrication of metal nanodot arrays on Si substrate. After the deposition of Ni thin films and subsequent lift-off of the AAO template, the hexagonal periodic Ni nanodot arrays were found to form on the surface of (001)Si substrate. The size of the deposited Ni nanodots were measured to be about 170 nm, corresponding to the pore size of the thin AAO template. Based on TEM and SAED analyses, it is found that the crystal structure of Ni nanodots is polycrystalline.

    第1章 簡介..........................................1 1-1 前言..........................................1 1-2 多孔性陽極氧化鋁奈米模板..........................................3 1-2-1 氧化鋁模板的發展背景..........................................3 1-2-2 氧化鋁模板的原理與製備..........................................4 1-2-3 陽極氧化反應的各種變因與影響..........................................6 1-2-4 陽極氧化鋁模板的相關應用..........................................7 1-3 在矽基材上製作陽極氧化鋁奈米模板..........................................8 1-3-1 直接轉置法..........................................8 1-3-2 鍍製鋁膜氧化法..........................................9 1-4 奈米球微影術..........................................10 1-4-1 奈米球自組裝技術..........................................10 1-4-2 奈米球微影術的發展..........................................10 1-4-3利用奈米球微影術製備各式規則排列新穎奈米結構..........................................11 1-5 規則排列之奈米點陣列..........................................11 1-6 研究動機..........................................12 第2章 實驗步驟..........................................14 2-1 以高純度鋁片製備陽極氧化鋁模板..........................................14 2-2 在矽基材上製備陽極氧化鋁模板..........................................16 2-2-1 矽晶片之清洗..........................................16 2-2-2 沉積鋁薄膜..........................................16 2-2-3 氧化鋁模板的製備:兩次陽極處理法..........................................17 2-3 在矽基材上製備規則有序排列之陽極氧化鋁模板..........................................17 2-3-1 矽基材上的鋁薄膜製備..........................................17 2-3-2 自組裝奈米球陣列..........................................18 2-3-3 調變奈米球球徑..........................................18 2-3-4 遮罩蒸鍍與奈米球之舉離..........................................18 2-3-5 一次陽極氧化與移除底部阻障層..........................................19 2-4 於矽基材上製備規則排列之鎳金屬奈米點..........................................19 2-5 矽基材上規則排列氧化矽點陣列的製作..........................................19 2-6 實驗設備..........................................20 2-6-1 氧化鋁模板製備系統..........................................20 2-6-2 直流式真空濺鍍系統..........................................20 2-6-3 電漿蝕刻系統..........................................20 2-6-4 電子槍蒸鍍系統..........................................21 2-7 分析儀器..........................................21 2-7-1 掃描式電子顯微鏡..........................................21 2-7-2 穿透式電子顯微鏡..........................................22 2-7-3 原子力顯微鏡..........................................22 第3章 結果與討論..........................................23 3-1 高純度鋁片製備之陽極氧化鋁模板..........................................23 3-1-1 以草酸為電解液製備陽極氧化鋁模板..........................................24 3-1-2 以硫酸為電解液製備陽極氧化鋁模板..........................................25 3-1-3 藉由電流曲線圖觀察陽極氧化之變因影響..........................................27 3-1-4 極小孔徑奈米模板之製程..........................................28 3-2 兩次陽極處理法製備矽基材上之陽極氧化鋁模板..........................................29 3-2-1 於矽基材表面沉積鋁金屬薄膜..........................................29 3-2-2 矽基氧化鋁奈米模板孔洞排列規則度之探討..........................................30 3-3 結合奈米球微影術進行陽極處理製備規則排列之氧化鋁奈米模板..........................................31 3-3-1 預置反應區域之矽基鋁金屬薄膜..........................................32 3-3-2 大面積規則有序排列矽基陽極氧化鋁模板之製備..........................................33 3-3-3 不同方式製備有序排列矽基氧化鋁模板結果比較..........................................34 3-4 大面積規則有序排列奈米點陣列之製備..........................................35 3-4-1 氧化矽奈米點陣列之製備與分析..........................................36 3-4-2 鎳金屬奈米點陣列之製備與分析..........................................37 第4章 結論與未來展望..........................................39 4-1 結論..........................................39 4-2 未來展望..........................................40 4-2-1 在不同基材上製備規則排列之陽極氧化鋁模板..........................................40 4-2-2 矽晶基材上大面積規則排列之金屬矽化物..........................................40 參考文獻..........................................41 圖目錄..........................................49

    [1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics. 38 (1965) 56-59.
    [2] J. M. López, D. Altbir, P. Landeros, J. Escrig, A. H. Romero, I. V. Roshchin, C.P. Li, M. R. Fitzsimmons, X. Batlle, and I. K. Schuller, “Development of Vortex State in Circular Magnetic Nanodots: Theory and Experiment,” Phys. Rev. B 81 (2010) 184417 1-8.
    [3] E. B. Gowda, B. Nandan, N. C. Bigall, A. Eychmüller, P. Formanek, and M. Stamm, “Hexagonally Ordered Arrays of Metallic Nanodots from Thin Films of Functional Block Copolymers,” Polymer 51 (2010) 2661-2667.
    [4] J. Xu, G. Chen, C. Song, K. Chen, X. F. Huang, and Z. Y. Ma, “Formation and Properties of High Density Si Nanodots,” Appl. Surf. Sci. 256 (2010) 5691-5694.
    [5] S. Ramaswamy, G. K. Rajan, Gopalakrishnan, and M. Ponnavaikko, “Study of Magnetization Reversal of Uniaxial Ni Nanodots by Magnetic Force Microscopy and Vibrating Sample Magnetometer,” J. Appl. Phys. 107 (2010) 09A331 1-3.
    [6] L. Zhang, H. Ye, Y. R. Huangfu, C. Zhang, and X. Liu, “Densely Packed Ge Quantum Dots Grown on SiO2/Si Substrate,” Appl. Surf. Sci. 256 (2009) 768-772.
    [7] S. Sena, P. Kanitkarb, A. Sharmac, K. P. Muthea, A. Rathd, S. K. Deshpandee, M. Kaura, R. C. Aiyerb, S. K. Guptaa, and J. V. Yakhmi, “Growth of SnO2/W18O49 Nanowire Hierarchical Heterostructure and Their Application as Chemical Sensor,” Sens. Actuators B 147 (2010) 453-460.
    [8] R. Rurali, M. Palummo, and X. Cartoixà1, “Convergence Study of Neutral and Charged Defect Formation Energies in Si Nanowires,” Phys. Rev. B 81 (2010) 235304 1-6.
    [9] H. W. Shim, D. K. Lee, I. S. Cho, K. S. Hong, and D. W. Kim, “Facile Hydrothermal Synthesis of Porous TiO2 Nanowire Electrodes with High-Rate Capability for Li Ion Batteries,” Nanotechnology 21 (2010) 255706 1-9.
    [10] J. I. Climente, J. Planelles, and F. Rajadell, “Temperature Dependence of the Spectral Band Shape of CdSe Nanodots and Nanorods,” Phys. Rev. B 80 (2009) 205312 1-5.
    [11] C. C. Ting, C. H. Li, C. Y. Kuo, C. C. Hsu, H. C. Wang, and M. H. Yang, “Compact and Vertically-Aligned ZnO Nanorod Thin Films by the Low-Temperature Solution Method,” Thin Solid Films 518 (2010) 4156-4162.
    [12] C. H. Chao, W. H. Lin, C. H. Chen, C. H. Changjean, and C. F. Lin, “Tunable Light Extraction Efficiency of GaN Light Emitting Diodes by ZnO Nanorod Arrays,” Semicond. Sci. Technol. 24 (2009) 105017 1-5.
    [13] J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of Plasmonic Dipolar Anti-Bonding Mode in Silver Nanoring Structures,” Nanotechnology 20 (2009) 465203 1-6.
    [14] J. Karamdela, C. F. Deea, and B. Y. Majlisa, “Characterization and Aging Effect Study of Nitrogen-Doped ZnO Nanofilm,” Appl. Surf. Sci. 256 (2010) 6164-6167.
    [15] Y. Su, J. Wu, X. Quan, and S. Chen, “Electrochemically Assisted Photocatalytic Degradation of Phenol Using Silicon-Doped TiO2 Nanofilm Electrode,” Desalination 252 (2010) 143-148.
    [16] T. Sugino, J. Kikuchi, S. Kawai, C. Kimura, and H. Aoki, “Improved Tunneling Controlled Field Emission of Boron Carbon Nitride Nanofilm,” Diamond Relat. Mater. 19 (2010) 545-547.
    [17] E. A. Bezus and L. L. Doskolovich, “Grating-Assisted Generation of 2D Surface Plasmon Interference Patterns for Nanoscale Photolithography,” Opt. Commun. 283 (2010) 2020-2025.
    [18] L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, “Biodegradable Microgrooved Polymeric Surfaces Obtained by Photolithography for Skeletal Muscle Cell Orientation and Myotube Development,” Acta Biomater. 6 (2010) 1948-1957.
    [19] F. Dinelli, C. Menozzi, P. Baschieri, P. Facci, and P. Pingue, “Scanning Probe Nanoimprint Lithography,” Nanotechnology 21 (2010) 075305 1-6.
    [20] H. L. Zhou and W. J. Shi, “Construction of Bovine Serum Albumin Nanostructure by Scanning Probe Nanolithography,” Chin. J. Anal. Chem. 37 (2009) 884-887.
    [21] D. Tomus, M. Qian, C. A. Bricec, and B. C. Muddlea, “Electron Beam Processing of Al–2Sc Alloy for Enhanced Precipitation Hardening,” Scripta Mater. 63 (2010) 151-154.
    [22] A. Wolfsteller, N. Geyer, T. K. Nguyen-Duc, P. D. Kanungo, N. D. Zakharov, M. Reiche, W. Erfurth, H. Blumtritt, S. Kalem, P. Werner, and U. Gösele, “Comparison of the Top-Down and Bottom-Up Approach to Fabricate Nanowire-Based Silicon/Germanium Heterostructures,” Thin Solid Films 518 (2010) 2555-2561.
    [23] S. Shingubara, S. Maruo, T. Yamashita, M. Nakao, and T. Shimizu, “Reduction of Pitch of Nanohole Array by Self-Organizing Anodic Oxidation after Nanoimprinting,” Microelectron. Eng. 87 (2010) 1451-1454.
    [24] Y. Li, Z. Y. Ling, S. S. Chen, X. Hu, and X. H. He, “Novel AAO Films and Hollow Nanostructures Fabricated by Ultra-High Voltage Hard Anodization,” Chem. Commun. 46 (2010) 309-311.
    [25] L. C. François, A. Laurent, and D. Lucien, “Chemical Analysis of a Single Basic Cell of Porous Anodic Aluminium Oxide Templates,” Mater. Charact. 61 (2010) 283-288.
    [26] A. A. Agrawal, B. J. Nehilla, K. V. Reisig, T. R. Gaborski, D. Z. Fang, C. C. Striemer, P. M. Fauchet, and J. L. McGrath, “Porous Nanocrystalline Silicon Membranes as Highly Permeable and Molecularly Thin Substrates for Cell Culture,” Biomaterials 31 (2010) 5408-5417.
    [27] N. Chiboub, R. Boukherroub, N. Gabouze, S. Moulay, N. Naar, S. Lamouri, and S. Sam, “Covalent Grafting of Polyaniline onto Aniline-terminated Porous Silicon,” Opt. Mater. 32 (2010) 748-752.
    [28] P. N. Vinod, “Specific Contact Resistance and Metallurgical Process of the Silver Based Paste for Making Ohmic Contact Structure on the Porous Silicon/p-Si Surface of the Silicon Solar Cell,” J Mater Sci: Mater Electron 21 (2010) 730-736.
    [29] K. R. Wigginton and P. J. Vikesland, “Gold-Coated Polycarbonate Membrane Filter for Pathogen Concentration and SERS-Based Detection,” Analyst 135 (2010) 1320-1326.
    [30] N. Baltes and J. Heinze, “Imaging Local Proton Fluxes through a Polycarbonate Membrane by Using Scanning Electrochemical Microscopy and Functionalized Alkanethiols,” ChemPhysChem 10 (2009) 174-179.
    [31] Y. S. Li, F. Y. Liang, H. Bux, A. Feldhoff, W. S. Yang, and J. Caro, “Molecular Sieve Membrane: Supported Metal-Organic Framework with High Hydrogen Selectivity,” Angew. Chem. Int. Ed. 49 (2010) 548-551.
    [32] D. Ramíreza, H. Gómeza, and D. Lincotb, “Polystyrene Sphere Monolayer Assisted Electrochemical Deposition of ZnO Nanorods with Controlable Surface Density,” Electrochim. Acta 55 (2010) 2191-2195.
    [33] C. P. Chang, C. C. Tseng, J. L. Ou, W. H. Hwu, and M. D. Ger, “Growth Mechanism of Gold Nanoparticles Decorated on Polystyrene Spheres via Self-Regulated Reduction,” Colloid Polym Sci 288 (2010) 395-403.
    [34] S. C. Hsiao, J. L. Ou, Y. Sung, C. P. Chang, and M. D. Ger, “Preparation of Sulfate- and Carboxyl-Functionalized Magnetite/Polystyrene Spheres for further Deposition of Gold Nanoparticles,” Colloid Polym Sci 288 (2010) 787-794.
    [35] F. Keller, M. S. Hunter, and D. L. Robinson, “Structural Features of Oxide Coatings on Aluminum,” J Electrochem Soc 100 (1953) 411-419.
    [36] G. E. Thompson, “Porous Anodic Alumina: Fabrication, Characterization and Applications,”Thin Solid Films 297 (1997) 192-201.
    [37] O. Jessensky, F. Muller, and U. Gösele, “Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,” Appl. Phys. Lett. 72 (1998) 1173-1175.
    [38] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays by Two-Step Replication of Honeycomb Structure of Anodic Alumina,” Science 268 (1995) 1466-1468.
    [39] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, “Highly Ordered Nanochannel-Array Architecture in Anodic Alumina,” Appl. Phys. Lett. 71 (1997) 2770-2772.
    [40] W. Lee, R. Ji, C. A. Ross, U. Gösele, and K. Nielsch, “Wafer-Scale Ni Imprint Stamps for Porous Alumina Membranes Based on Interference Lithography,” Small 2 (2006) 978-982.
    [41] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nanochannels on Focused-Ion-Beam Pre Patterned Aluminum Surfaces,” Appl. Phys. Lett. 78 (2001) 120-122.
    [42] Z. W. Yao, M. J. Zheng, L. Ma, and W. Z. Shen, “The Fabrication of Ordered Nanoporous Metal Films Based on High Field Anodic Alumina and Their Selected Transmission Enhancement,” Nanotechnology 19 (2008) 465705 1-7.
    [43] L. Zaraska, G. D. Sulka, J. Szeremeta, and M. Jaskuła, “Porous Anodic Alumina Formed by Anodization of Aluminum Alloy (AA1050) and High Purity Aluminum,” Electrochim. Acta 55 (2010) 4377-4386.
    [44] W. Lee, K. Nielsch, and U. Gösele, “Self-Ordering Behavior of Nanoporous Anodic Aluminum Oxide (AAO) in Malonic Acid Anodization,” Nanotechnology 18 (2007) 475713 1-8.
    [45] R. Zhang, K. M. Jiang, and G. Q. Ding, “Surface Morphology Control on Porous Anodic Alumina in Phosphoric Acid,” Thin Solid Films 518 (2010) 3797-3800.
    [46] K. H. Leea and C. C. Wong, “Decoupling Two-Step Anodization in Anodic Aluminum Oxide,” J. Appl. Phys. 106 (2009) 104305 1-3.
    [47] L. Zaraska, G. D. Sulka, and M. Jaskuła, “The Effect of n-Alcohols on Porous Anodic Alumina Formed by Self-Organized Two-Step Anodizing of Aluminum in Phosphoric Acid,” Surf. Coat. Technol. 204 (2010) 1729-1737.
    [48] K. Lee, Y. Tang, and M. Ouyang, “Self-Ordered, Controlled Structure Nanoporous Membranes Using Constant Current Anodization,” Nano Lett. 8 (2008) 4624-4629.
    [49] Y. Na, U. Farva, S. M. Cho, and C. Park, “Synthesis and Optimization of Porous Anodic Aluminum Oxide Nano-Template for Large Area Device Applications,” Korean J. Chem. Eng. 26 (2009) 1785-1789.
    [50] A. Belwalkara, E. Grasinga, W. V. Geertruydenb, Z. Huangc, and W. Z. Misioleka, “Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes,” J. Membrane. Sci. 319 (2008) 192¬-198.
    [51] J. T. Kwon, H. G. Shin, Y. H. Seo, B. H. Kim, H. G. Lee, and J. S. Lee, “Simple Fabrication Method of Hierarchical Nano-Pillars Using Aluminum Anodizing Processes,” Curr. Appl. Phys. 9 (2009) e81-e85.
    [52] G. D. Sulkaa and W. J. Stępniowski, “Structural Features of Self-Organized Nanopore Arrays Formed by Anodization of Aluminum in Oxalic Acid at Relatively High Temperatures,” Electrochim. Acta 54 (2009) 3683-3691.
    [53] M. Lillo and D. Losic, “Pore Opening Detection for Controlled Dissolution of Barrier Oxide Layer and Fabrication of Nanoporous Alumina with Through-Hole Morphology,” J. Membrane. Sci. 327 (2009) 11-17.
    [54] D. A. Vermilyea, “Determination of Barrier Layer Thickness of Anodic Oxide Coatings,” J. Electrochem. Soc. 101 (1954) 345 1-5.
    [55] M. A. Heine and M. J. Pryor, “A Study of Pore Structures of Anodized Aluminum,” J. Electrochem. Soc. 108 (1961) 185-191.
    [56] A. J. Brock and G. C. Wood, “Studies on the Structure of Anodic Oxide Films on Aluminum,” J. Electrochem. Soc. 106 (1959) 481-485.
    [57] G. T. Roger, P. H. G. Draper, and S. S. Wood, “Information on Anodic Oxide on Valve Metals: Oxide Growth at Constant Rate of Voltage Increase,” Electrochem. Acta 13 (1968) 251.
    [58] G. E. Thompson and G. C. Wood, “Porous Anodic Film Formation of Aluminum,” Nature 290 (1981) 230-232.
    [59] M. T. Rahman, N. N. Shams, and C. H. Laia, “Nonlithographic Fabrication of 25 nm Magnetic Nanodot Arrays with Perpendicular Anisotropy over A Large Area,” J. Appl. Phys. 105 (2009) 07C112.
    [60] R. E. Sabzia, K. Kantb, and D. Losicb, “Electrochemical Synthesis of Nickel Hexacyanoferrate Nanoarrays with Dots, Rods and Nanotubes Morphology Using A Porous Alumina Template,” Electrochem. Acta 55 (2010) 1829-1835.
    [61] N Taşaltın, S Oztürk, N Kılınç, H Yüzer, and Z. Z. Oztürk, “Fabrication of Vertically Aligned Pd Nanowire Array in AAO Template by Electrodeposition Using Neutral Electrolyte,” Nanoscale Res Lett 5 (2010) 1137-1143.
    [62] Z. F. Zhou, Y. C. Zhou, Y. Pan, and C. F. Xu, “Melting of Ni Nanowires with and without Oxide Capping,” Acta Mater. 58 (2010) 3059-3067.
    [63] J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-Performance Biosensing Using Arrays of Plasmonic Nanotubes,” Acs Nano 4 (2010) 2210-2216.
    [64] C. W. Huang and Y. W. Hao, “The Fabrication of Short Metallic Nanotubes by Templated Electrodeposition,” Nanotechnology 20 (2009) 445607 1-7.
    [65] G. Meng, Y. J. Jung, A. Cao, R. Vajtai, and P. M. Ajayan, “Controlled Fabrication of Hierarchically Branched Nanopores, Nanotubes, and Nanowires,” PNAS 102 (2005) 7074-7078.
    [66] S. Öztürk, N. Taşaltin, N. Kilinç, and Z. Z. Öztürk, “Fabrication of ZnO Nanotubes Using AAO Template and Sol-Gel Method,” J. Optoe. Biomed. Mater. 1 (2009) 15-19.
    [67] J. H. Jang, W. S. Choi, C. H. Lee, G. H. Jeong, N. J. Kim, C. L. Yu, C. Parkc, and S. J. Suha, “Fabrication and Characterization of A Thin Film Capacitor Using Al Anodizing and Ni Electroless Plating,” Scripta Mater. 63 (2010) 269-272.
    [68] T. Shimizu, Z. Zhang, S. Shingubara, S. Senz, and U. Gösele, “Vertical Epitaxial Wire-on-Wire Growth of Ge/Si on Si(100) Substrate,” Nano Lett. 9 (2009) 1523-1526.
    [69] Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. 21 (2009) 4701-4705.
    [70] N. Geyer, Z. Huang, B. Fuhrmann, S. Grimm, M. Reiche, T. K. Nguyen-Duc, J. de Boor, H. S. Leipner, P. Werner, and U. Gösele, “Sub-20 nm Si/Ge Superlattice Nanowires by Metal-Assisted Etching,” Nano Lett. 9 (2009) 3106-3110.
    [71] M. T. Rahman, N. N. Shams, C. H. Lai, J. Fidler, and D. Suess, “Co/Pt Perpendicular Antidot Arrays with Engineered Feature Size and Magnetic Properties Fabricated on Anodic Aluminum Oxide Templates,” Phys. Rev. B 81 (2010) 014418 1-7.
    [72] T. R. B. Foong, Y. Shen, X. Hu, and A. Sellinger, “Template-Directed Liquid ALD Growth of TiO2 Nanotube Arrays: Properties and Potential in Photovoltaic Devices,” Adv. Funct. Mater. 20 (2010) 1-7.
    [73] B. Kang, U. Yeo, and K. H. Yoo, “Anodized Aluminum Oxide-Based Capacitance Sensors for the Direct Detection of DNA Hybridization,” Biosens. Bioelectron. 25 (2010) 1592-1596.
    [74] D. Y. Lee, D. H. Lee, H. S. Lim, J. T. Han, and K. Cho, “Chemical and Geometrical Criteria for the Release of Elastomeric 1D Nanoarrays from Porous Nanotemplates,” Langmuir 26 (2010) 3252-3256.
    [75] D. Navas, M. H. Vélez, and M. Vázquez, “Ordered Ni Nanohole Arrays with Engineered Geometrical Aspects and Magnetic Anisotropy,” Appl. Phys. Lett. 90 (2007) 192501 1-3.
    [76] Jin. Y. Jung, S. W. Jee, and J. H. Lee, “Single-Crystal Al-Catalyzed Si Nanowires Grown via Hedgehog-Shaped Al–Si Aggregates,” Appl. Surf. Sci. 256 (2010) 1744-1748.
    [77] F. Zacharatos, V. Gianneta, and A. G. Nassiopoulou, “Highly Ordered Hexagonally Arranged Sub-200 nm Diameter Vertical Cylindrical Pores on p-Type Si Using Non-Lithographic Pre-Patterning of the Si Substrate,” Phys. Status Solidi A 206 (2009) 1286-1289.
    [78] X. Zhao, U. J. Lee, S. K. Seo, and K. H. Lee, “The Nanoporous Structure of Anodic Aluminum Oxide Fabricated on the Au/Nb/Si Substrate,” Mater. Sci. Eng. C 29 (2009) 1156-1160.
    [79] Y. Lei, W. Cai, and G. Wilde, “Highly Ordered Nanostructures with Tunable Size, Shape and Properties: A New Way to Surface Nano-Patterning Using Ultra-Thin Alumina Masks,” Prog. Mater Sci. 52 (2007) 465-539.
    [80] V. Gianneta, A. G. Nassiopoulou, C. A. Krontiras, and S. N. Georga, “Porous Anodic Alumina Thin Films on Si: Interface Characterization,” Phys. Stat. Sol. (c) 5 (2008) 3686-3689.
    [81] C. L. Xu, H. Li, G. Y. Zhao, and H. L. Li, “Electrodeposition and Magnetic Properties of Ni Nanowire Arrays on Anodic Aluminum Oxide/Ti/Si Substrate,” Appl. Surf. Sci. 253 (2006) 1399-1403.
    [82] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
    [83] P. A. Kralchevsky and N. D. Denkov, “Capillary Forces and Structuring in Layers of Colloid Particles,” Curr. Opinion. Coll. Interf. Sci. 6 (2001) 383-401.
    [84] M. A. Wood, “Colloidal Lithography and Current Fabrication Techniques Producing in-Plane Nanotopography for Biological Applications,” J. R. Soc. Interface 4 (2007) 1-17.
    [85] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
    [86] Y. Li, W. Cai, G. Duan, F. S. B. Cao, and F. Lu, “2D Nanoparticle Arrays by Partial Dissolution of Ordered Pore Films,” Material Letters 59 (2005) 276-279.
    [87] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys Rev. Lett. 84 (2000) 2997-3000.
    [88] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17 (2005) 1507-1511.
    [89] V. Ng, Y. V. Lee, B. T. Chen, and A.O. Adeyeye, “Nanostructure Array Fabrication with Temperature-Controlled Self Assembly Techniques,” Nanotechnology 13 (2002) 554-558.
    [90] X. Chen, X. Wei, and K. Jiang, “The Fabrication of High-Aspect-Ratio, Size-Tunable Nanopore Arrays by Modified Nanosphere Lithography,” Nanotechnology 20 (2009) 425605 1-5.
    [91] R. P. V. Dutne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Custer Arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
    [92] W. Ma, D. Hesse, and U. Gösele, “Formation of Ferroelectric Perovskite Nanostructure Patterns Using Latex Sphere Monolayers as Masks: An Ambient Gas Pressure Effect during Pulsed Laser Deposition,” Small 1 (2005) 837-841.
    [93] N. Li and M. Z. Allmang, “Size-Tunable Ge Nano-Particle Arrays Patterned on Si Substrates with Nanosphere Lithography and Thermal Annealing,” J. Appl. Phys. 41 (2002) 4626-4629.
    [94] E. Gėraud, V. Prėvot, J. Ghanbaja, and F. Leroux, “Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template,” Chem. Mater. 18 (2006) 238-240.
    [95] A. L. Lipson, D. J. Comstock, and M. C. Hersam, “Nanoporous Templates and Membranes Formed by Nanosphere Lithography and Aluminum Anodization,” Small 5 (2009) 2807-2811.
    [96] C. Li, P. X. Yan, X. C. Li, and E. M. Chong, “Electron Field Emission from Diamond-Like Carbon Nanodot Arrays,” Physica E 42 (2010) 1343-1346.
    [97] S. H. Hong, B. J. Bae, H. Lee, and J. H. Jeong, “Fabrication of High Density Nano-Pillar Type Phase Change Memory Devices Using Flexible AAO Shaped Template,” Microelectron. Eng. (2010).
    [98] C. Lu and Z. Chen, “High-Temperature Resistive Hydrogen Sensor Based on Thin Nanoporous Rutile TiO2 Film on Anodic Aluminum Oxide,” Sensors and Actuators B 140 (2009) 109-115.
    [99] F. Zhang, X. Liu, C. Pan, and J. Zhu, “Nano-Porous Anodic Aluminium Oxide Membranes with 6–19 nm Pore Diameters Formed by a Low-Potential Anodizing Process,” Nanotechnology 18 (2007) 345302.

    QR CODE
    :::