跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林宜興
Yi-Xing Lin
論文名稱: 透過馬可夫鏈之下的 copula 模型對二項式時間序列資料線上改變點的偵測
Online Changepoint Detection under a Copula-based Markov Chain Model for Binomial Time Series Data
指導教授: 孫立憲
Li-Hsien Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 95
中文關鍵詞: 改變點Copula尾部相關馬可夫鏈模型步長
外文關鍵詞: changepoint, Copula, tail dependence, Markov model, run length
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當生成資料序列的參數發生異常的改變,我們稱之為改變點,而改變點偵測就是為了偵測參數不規則變化的發生。改變點偵測又分即時偵測與線下偵測,這篇論文主要聚焦在即時改變點偵測,而即時改變點偵測是當我們隨著時間得到觀察值的同時判斷該觀察值是否為改變點。這個方法最主要的目標就是在改變點出現之後,能盡快發現改變點,並做出相對應的策略,在理想的狀況下,我們希望能在改變點出現的同時就能偵測到改變點的訊號。在此工作中,我們利用分析步長來決定可能的改變點。此外,在實務中,由於獨立的假設在大部分序列型資料是不成立的,我們考慮馬可夫鏈模型去描述資料之間的相關性。並且使用有左尾相關性的Clayton copula與右尾相關性
    的Joe copula來描述聯合分配,邊際分配的部分為二項分配。在實證分析中,珠寶製造的數據為分析資料,目的是盡早找出改變點的發生,並檢查製造珠寶的過程,以降低製造珠寶的不良率。


    When the parameters of the marginal distribution for the sequential data are abnormally changed, we call it the changepoint, and changepoint detection is to detect
    the occurrence of irregular changes in parameters. Changepoint detection is divided into online detection and offline detection. This paper mainly focuses on online changepoint detection. Online changepoint detection is to monitor whether the observation is a changepoint or not when we obtain data over time. The purpose is to detect the changepoint as soon as possible after the changepoint appears, and make corresponding strategies. We
    focus on fraction nonconforming change by using the most possible run length to identify changepoint in this paper. We compute the probability of the run length distribution to
    identify the most possible run length at each time. In addition, since it is not practical to assume the data is independent in most cases, we describe the dependence structure by using the copula-based Markov model. In this work, we consider the Clayton copula and
    the Joe copula and the marginal distribution is the binomial distribution. In empirical analysis, jewelry manufacturing data analysis is for the purpose of finding out when the
    changepoint occurs as early as possible and checking the process of manufacturing the jewelry, so as to reduce the probability of broken jewelry.

    Contents Abstract ii Contents iii 1 Introduction 1 2 Background Knowledge 4 2.1 Settings and notations for the proposed methods . . . . . . . . . . . . . . . 4 2.2 The Bayesian Online Changepoint Detection Method . . . . . . . . . . . . 6 3 Copula-based Markov model 10 3.1 Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 The Chi-plot and tail dependence . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 First-order Copula-based Markov model . . . . . . . . . . . . . . . . . . . 15 4 Proposed the method of online changepoint detection 19 4.1 Model assumption and notations . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Proposed method for online changepoint detection . . . . . . . . . . . . . . 20 5 Simulation Study 24 5.1 Data generation and performance measure . . . . . . . . . . . . . . . . . . 24 5.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2.1 Performance on the proposed method . . . . . . . . . . . . . . . . . 26 5.2.2 Sensitivity analysis for Binomial distribution parameters . . . . . . 35 5.3 Results for comparing with the independent model . . . . . . . . . . . . . 57 6 Empirical Study 66 6.1 Jewelry data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.2 Empirical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7 Conclusions 71 References 72 Appendices 75 A R codes for our proposed method under the Clayton copula 75 B R codes for our proposed method under the Joe copula 79

    References

    Abberger, K. (2005). A simple graphical method to explore tail-dependence in stock-return
    pairs, Applied Financial Economics, 15, 43-51.
    Adams, R.P. and Mackay, D.J. (2007). Bayesian online changepoint detection. arXiv
    preprint arXiv: 0710.3742

    Aminikhanghahi, S. and Cook, D.J. (2017). A survey of methods for time series change
    point detection. Knowledge and Information Systems, 51, 339–367.
    Assareh, H., Smith, I. and Mengersen, K. (2015). changepoint detection in risk adjusted
    control charts. Statistical Methods in Medical Reasearch, 24, 747-768.
    Barry, D. and Hartigan J.A. (1992). Product partition models for changepoint problems.

    The Annals of Statistics, 20, 260-279.
    Burr, W.I. (1979). Elementary Statistical Quality Control. Dekker, New York.
    Duran, R.I. and Albin, S.L. (2009). Monitoring a fraction with easy and reliable settings
    of the false alarm rate. Quality and Reliability Engineering International, 25, 1026-1043
    Emura, T. and Liao, Y.T. (2018). Critical review and comparison of continuity correction
    methods: the normal approximation to the binomial distribution. Communication in
    Statistics - Simulation and Computation, 47, 2266-2285.
    Emura, T. and Lin, Y.S. (2015). A comparison of normal approximation rules for attribute
    control charts. Quality and Reliability Engineering International, 31, 411-418.
    Emura, T., Lai, C.C., and Sun, L.H. (2021). Changepoint estimation under a copula-based
    Markov chain model for binomial time series. Econometrics and Statistics.
    Emura, T., Long, T.H. and Sun, L.H. (2017). R routines for performing estimation and
    statistical process control under copula-based time series models, Communications in
    Statistics-Simulation and Computation, 46, 3067-3087.
    Fisher, N.I. and Switzer, P. (1985). Chi-plots for assessing dependence, Biometrika, 72,
    253-265.
    Genest, C. and MacKay, R.J. (1986). Copules archim´ediennes et families de lois bidimensionnelles
    dont les marges sont donn´ees, Canadian Journal of Statistics, 14, 145-159.
    Johnson, T.D., Elashoff, R.M. and Harkema, S.J. (2003). A Bayesian changepoint analysis
    of electromyographic data: detecting muscle activation patterns and associated
    applications. Biostatistics, 4, 143-164.
    Kendall, M.G. (1938). A new measure of rank correlation. Biometrika, 30, 81-93.
    Lund, R., Reeves, J. (2002). etection of undocumented changepoints: A revision of the
    two-phase regression model.Journal of Climate, 15, 2547-2554.
    Montgomery, D.C. (2009). Introduction to Statistical Quality Control. Wiley, New York.
    Nagaraj, N.K. (1990). Two-sided tests for change in level for correlated data. Statistical
    Papers, 31, 181-194.
    Nelsen, R.B. (2006). An Introduction to Copulas. Springer, New York.
    Perry, M.B., Pignatiello, J.J. and Simpson, J.R. (2007). Estimating the changepoint of the
    process fraction nonconforming with a monotonic change disturbance in SPC. Equality
    and Reliability Engineering International, 23, 327-339.
    Pignatiello, J.J. and Samuel, T.R. (2000). Identifying the time of a step change in the
    process fraction nonconforming. Quality Engineering, 13, 357-365.
    Ritov, Y., Raz, A., Bergman, H. (2002). Detection of onset of neuronal activity by
    allowing for heterogeneity in the change points. Journal of neuroscience methods, 122,
    25-42.
    Rossi, G., Sarto, S.D., and Marchi, M.A. (2014). New risk-adjusted Bernoulli cumulative
    sum chart for monitoring binary health data. Statistical Methods in Medical Reasearch.
    doi: 10.1177/0962280214530883.

    Sklar, A. (1959). Fonctions de re’partition a’n dimensions et leurs marges, Publica-tions
    de l’Intitut de Statistique de l’Universit de Paris, 8, 229-231.
    Wang, H. (2009). Comparison of p control charts for low defective rate. Computational
    Statistics and Data Analysis, 53, 4210-4220.
    Wetherill, G.B. and Brown, D.W. (1911). Statistical Process Control: Theory and Practice.
    Chapman and Hall, London.

    QR CODE
    :::