跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳季儒
Chi-ju Wu
論文名稱: 克普勒任務觀測G型星超級閃焰的資料分析
Data Analysis of Superflares on G-type Stars Observed by Kepler Mission
指導教授: 葉永烜
Wing-huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 太陽恆星閃焰頻率超級閃焰
外文關鍵詞: solar, G-type stars, flare, frequency, superflares
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文中,我分析由克普勒任務所觀察的77個G型恆星的光度變化,且扣除假事件後找到4944個確定的超級閃焰事件。藉由計算其時間以及利用史蒂芬-波茲曼定理來估計閃焰能量,這些超級閃焰的能量介於5×1034 - 1036 爾格,且似乎有一個能量上限2×1037 爾格。 此外,持續較長的閃焰有較小的振幅,在光度的時間序列中也表現較多的小突起,表示有多個閃焰。而持續時間短的閃焰的衰退期較平滑。每顆星的閃焰頻率符合冪次定理,但冪次指數變化由0.68±0.24 至 2.91±0.29,若只考慮閃焰發生頻率高於10%的星,冪次指數變化由1.2至2.18。且趨勢顯示,自轉周期較短的恆星容易有較大的冪次指數。另外,兩個恆星活躍程度的指標表示大部分的恆星一年會發生3至20個超級閃焰,且大部分時間有0.5 – 5% 恆星表面積的恆星黑子。最小的產生超級閃焰的恆星黑子約為0.5% 恆星表面積,為太陽紀錄上最大的太陽黑子。大部分介於能量1034-1035 爾格的超級閃焰有8-25% 恆星表面積的恆星黑子。由恆星自轉相位和閃焰發生時間點的關係顯示只有7.3% 的超級閃焰發生於相對較大的黑子面對觀測者,而有9.5%的閃焰發生於相對較小黑子時。


    In this thesis, I analyze the light curves of 77 G type stars observed by Kepler Mission based on flaring events and well-defined periodicity, and find 4944 confirmed superflares excluding the false events. By estimating the flares duration and flare energy with Stefan-Boltzmann law, I find the superflares have energy on average of 5×1034 - 1036 ergs and saturation with 2×1037 ergs. Furthermore, the long duration flares tend to have smaller flare amplitudes with several bumps in the decay phase, while short duration flares have higher amplitudes with smooth decay. Additionally, the power-law index γ values vary widely from 0.68±0.24 to 2.91±0.29, suggesting that the stars are at random phases, and have different chromospheric activities. If we only consider the stars with flare percentage larger than 10%, the γ values have range 1.2-2.18. Additionally, a trend is shown that the stars with shorter rotation periods tend to have larger power-law indices. Moreover, two indicators of the stellar activity show that most of the stars have 3-20 superflares a year; and that the stars generally have spot coverage 0.5 - 5% of surface. The lowest limit of spot size to produce superflares need to be larger than 0.5% of stellar surface, which is the size of the biggest sun spot in 1947. And most of superflares with 1034-1035 ergs have 8-25% spot coverage. Besides, the relation between stellar phase and flare timing shows that there are 7.3% of superflares occur at the dimmer part of light curve, and 9.5% at the brightest part of light curves.

    中文摘要. i Abstract .. ii Acknowledgements . iii Content .. iv List of Figures vi List of Tables viii Chapter1 Introduction .. 1 1.1 G type main sequence stars . 1 1.2 Physic of flares . 4 1.2.1 Standard solar flare model .. 4 1.2.2 Solar flare observations. 6 1.2.3 White light flare 6 1.2.4 Stellar flare .. 8 1.3 Self-Organized Criticality and flare 9 1.4 Sunspot and Complexity 10 Chapter2 Observation 12 2.1 Kepler mission 12 2.2 Instruments 13 Chapter3 Data analysis.. 16 3.1 Kepler data 16 3.2 Targets selection . 17 3.3 Flare detection . 18 3.4 Results .. 24 3.4.1 Flare duration .. 24 3.4.2 Flare peak amplitude 26 3.4.3 Flare energy.. 27 Chapter4 Stellar properties . 31 4.1 Stellar activity .. 31 4.1.1 Flare occurrence percentage 32 4.1.2 Variability range of light curves . 33 4.2 Stellar rotation period estimation 37 Chapter5 Power-law fitting . 40 Chapter6 Discussion 45 6.1 Discussion on the variability in the frequency distributions 45 6.2 Discussion on the flare profiles.. 48 6.3 Discussion on power-law indices and flare percentage . 51 6.4 Discussion on the power-law indices and stellar rotation period.. 52 6.5 Discussion on stellar rotation period and photometric variability 53 6.6 Discussion on spot coverage and flare energy 55 6.7 Discussion on flare timing 56 Chapter7 Summary . 58 Bibliography . 60 Appendix1 Kepler instruments .. 67 Appendix2 Properties of 77 Flaring stars . 68 Appendix3 Conversion between spot size, amplitude, and variability range . 73

    [1] Aschwanden 2010arXiv1003.0122A
    [2] Aschwanden, M. J. 2010, The state of Self-Organized Criticality of the Sun During the Last Three Solar Cycles.ⅠObservations, Solar Physics 274, 119-129
    [3] Bak, P., Tang, C., & Wiesenfeld, K. 1987, Self-organized criticality – An explanation of 1/f noise, Physical Review Lett. 59/27,381-384
    [4] Bak, P., Tang, C., & Wiesenfeld, K. 1988, Self-organized criticality, pp.364-374
    [5] Barclay, T., Still, M., Jenkins, J. M., & et al. 2012, Serendipitous Kepler observations of a background dwarf nova of SU UMa type, MNRAS, 422, 1219
    [6] Barning, F. J. M. 1963, The numerical analysis of the light-curve of 12 Lacertae, Bulletin of the Astronomical Institutes of the Netherlands, Vol. 17, p.22
    [7] Basri, G., Borucki, W. J., & Koch, D. 2005, The Kepler Mission: A wide-field transit search for terrestrial planets, New Astronomy Reviews, v. 49, iss. 7-9, p. 478-485
    [8] Basri G., Romos-Stierle, F., Soto., K., & et al. 2008, The Kepler Mission: Terrestrial Extrasolar Planets and Stellar Activity, ASPC, 384, 281
    [9] Basri, G., Walkowicz, L. M., Batalha, N., & et al. 2011, Photometric Variability in Kepler Target Stars. II. An Overview of Amplitude, Periodicity, and Rotation in First Quarter Data, AJ, 141, Issue 1, article id. 20.8 pp
    [10] Basri, G., Walkowicz, L. M., & Reiners, A. 2013, Comparison of Kepler Photometric Variability with the Sun on Different Timescales, The Astrophysical Journal, Volume 769, Issue 1, article id. 37, 20 pp.
    [11] Benz, A. O., & Güdel, M. 2010, Physical Processes in Magnetically Driven Flares on the Sun, Stars, and Young Stellar Objects, Annual Review of Astronomy and Astrophysics, vol. 48, p.241-287
    [12] Borucki, W.J., Koch, D., Basri, G., & et al. 2010, Kepler Planet-Detection Mission: Introduction and First Results, Science, Volume 327, Issue 5968, pp. 977-
    [13] Bray, R. J., & Loughhead R. E. 1964, Sunspots, The International Astrophysics Series, London: Chapman & Hall
    [14] Carrington, R. C. 1860, Monthly Notices of the Royal Astronomical Society, vol. 20, p.13
    [15] Cliver, E. W. 1983, Secondary peaks in solar microwave outbursts, Solar Physics, vol. 84, April 1983, p. 347-359
    [16] Dennis, B.R. 1985, Solar hard X-ray bursts, Solar Physics, vol. 100, Oct. 1985, p. 465-490
    [17] Fröhlich, H.- E., Frasca, A., Catanzaro, G., & et al. 2012, Magnetic activity and differential rotation in the young Sun-like stars KIC 7985370 and KIC 7765135, Astronomy & Astrophysics, Volume 543, id.A146, 16 pp
    [18] Gershberg, R. E. 2005, Solar-Type Activity in Main-Sequence Stars, Solar-Type Activity in Main-Sequence Stars, Astronomy and Astrophysics Library. ISBN 978-3-540-21244-7
    [19] Gilliland, R. L., Jenkins, J. M., Borucki, W. J., & et al. 2010, Initial Characteristics of Kepler Short Cadence Data, The Astrophysical Journal Letters, Volume 713, Issue 2, pp. L160-L163
    [20] Gizis, J. E., Burgasser, A. J., Berger, E. & et al. 2013, Kepler Monitoring of an L Dwarf I. The Photometric Period and White Light Flares, The Astrophysical Journal, Volume 779, Issue 2, article id. 172, 14 pp
    [21] Hale, G. E., Ellerman, F., Nicholson, S. B., & et al. 1919, The Magnetic Polarity of Sun-Spots, Astrophysical Journal, vol. 49, p.153
    [22] Hawley, S. L., & Pettersen, B., R. 1991, The great flare of 1985 April 12 on AD Leonis, Astrophysical Journal, Part 1, vol. 378, Sept. 10, 1991, p. 725-741
    [23] Hoge, E. R, 1947, The Great Sunspot Group of March and April, 1947, Publications of the Astronomical Society of the Pacific, Vol. 59, No. 348, p.109
    [24] Huber, D., Aguirre, V. S., Matthews, J. M., & et al. 2014, Revised Stellar Properties of Kepler Targets for the Quarter 1-16 Transit Detection Run, The Astrophysical Journal Supplement, Volume 211, Issue 1, article id. 2, 18 pp
    [25] Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Habitable Zones around Main Sequence Stars, Icarus, Volume 101, Issue 1, p. 108-128
    [26] Kinemuchi, K., Barclay, T., Fanelli, M., & et al. 2012, Demystifying Kepler Data: A Primer for Systematic Artifact Mitigation, Publications of the Astronomical Society of the Pacific, Volume 124, issue 919, pp.963-984
    [27] Kiraga, M., & Stępień, K. 2011, Age-Rotation-Activity Relations for M Dwarf Stars, Acta Astronomica, Vol. 57, pp.149-172
    [28] Kopp, G., Lawrence, G., & Rottman, G. 2005, The Total Irradiance Monitor (TIM): Science Results, Solar Physics, Volume 230, Issue 1-2, pp. 129-139
    [29] Kopp, R. A., & Pneuman, G. W. 1976, Magnetic reconnection in the corona and the loop prominence phenomenon, Solar Physics, vol. 50, Sept.-Oct. 1976, p. 85-98
    [30] Kowalski, A. F., Hawley, S. L., Holtzman, J. A. 2010, A White Light Megaflare on the dM4.5e Star YZ CMi, The Astrophysical Journal Letters, Volume 714, Issue 1, pp. L98-L102
    [31] Kretzschmar, M. 2011, The Sun as a star: observations of white-light flares, Astronomy & Astrophysics, Volume 530, id.A84, 7 pp
    [32] Krucker, S., & Lin, R. P. 2000, On the solar release of Energetic Particles detected at 1 AU, Acceleration and transport of energetic particles observed in the heliosphere: ACE 2000 Symposium. AIP Conference Proceedings, Volume 528, pp. 87-90
    [33] Künzel, H. 1960, Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur, Astronomische Nachrichten, volume 285, p.271
    [34] Lanza, A. F., Aigrain, S., Messina, S., & et al. 2009, Photospheric activity and rotation of the planet-hosting star CoRoT-4a, Astronomy and Astrophysics, Volume 506, Issue 1, 2009, pp.255-262
    [35] Lin, R. P., Schwartz, R. A., Kane, S. R., & et al. 1984, Solar hard X-ray microflares, Astrophysical Journal, Part 1, vol. 283, Aug. 1, 1984, p. 421-425
    [36] Lomb, N. R. 1976, Least-squares frequency analysis of unequally spaced data, Astrophysics and Space Science, vol. 39, Feb. 1976, p. 447-462
    [37] Loomis, E. 1861, The great auroral exhibition of August 28th to September 4th 1859, Am. J. Sci. Arts, Second Series. 28, 32, 71–84, 318-335
    [38] Lu, E. T, & Hamilton, R. J. 1991, Avalanches and the Distribution of Solar Flares, Bulletin of the American Astronomical Society, Vol. 23, p.1044
    [39] Maehara, H., Shibayama, T., Notsu, S., & et al. 2012, Superflares on solar-type stars, Nature, Volume 485, Issue 7399, pp. 478-481
    [40] Matthews, S. A., van Driel-Gesztelyi, L., Hudson, H. S. & et al. 2003, A catalogue of white-light flares observed by Yohkoh, Astronomy and Astrophysics, v.409, p.1107-1125
    [41] Martínez Oliveros, J.-C., Hudson, H. S., Hurford, G. J., & et al. 2012, The Height of a White-light Flare and Its Hard X-Ray Sources, The Astrophysical Journal Letters, Volume 753, Issue 2, article id. L26, 5 pp.
    [42] McIntosh, P. S. 1990, The classification of sunspot groups, Solar Physics, vol. 125, Feb. 1990, p. 251-267
    [43] McQuillan, A., Aigrain, S., & Mazeh, T. 2013, Measuring the rotation period distribution of field M dwarfs with Kepler, Monthly Notices of the Royal Astronomical Society, Volume 432, Issue 2, p.1203-1216
    [44] Mikkel, N. L., Hans, K., Jørgen C.-D., & et al. 2014, Detection of ℓ = 4 and ℓ = 5 Modes in 12 Years of Solar VIRGO-SPM Data—Tests on Kepler Observations of 16 Cyg A and B, The Astrophysical Journal, Volume 782, Issue 1
    [45] Neupert, W. M. 1968, Comparison of Solar X-Ray Line Emission with Microwave Emission during Flares, Astrophysical Journal, vol. 153, p.L59
    [46] Noyes, R.W. 1985, Stellar analogs of solar magnetic activity, SoPh, 100, 385
    [47] Noyes, R. W., Weiss, N. O., & Vaughan, A. H. 1984, The relation between stellar rotation rate and activity cycle periods, Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 287, Dec. 15, 1984, p. 769-773
    [48] Osten, R. A. 2012, Probing Magnetic Mysteries with Stellar Flares, New Horizons in Time-Domain Astronomy, Proceedings of the International Astronomical Union, IAU Symposium, Volume 285, p. 137-137
    [49] Palla, F. & Stahler, S. W. 1999, Star Formation in the Orion Nebula Cluster, The Astrophysical Journal, Volume 525, Issue 2, pp. 772-783
    [50] Pallavicini, R., Golub, L., Rosner, R., & et al. 1981, Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity, Astrophysical Journal, Part 1, vol. 248, Aug. 15, 1981, p. 279-290
    [51] Patty, S. R., & Hagyard, M. J. 1986, Delta-configurations - Flare activity and magnetic-field structure, Solar Physics (ISSN 0038-0938), vol. 103, Jan. 1986, p. 111-128.
    [52] Pinsonneault, M. H., An, D., Molenda-Żakowicz, J., & et al. 2013, A Revised Effective Temperature Scale for the Kepler Input Catalog, The Astrophysical Journal Supplement, Volume 199, Issue 2, article id. 30, 22 pp
    [53] Pizzolato, N., Maggio, A., Micela, G., & et al. 2003, The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs, Astronomy and Astrophysics, v.397, p.147-157
    [54] Rauer, H., Catala, C., Aerts, C., & et al. 2013, The PLATO 2.0 Mission, eprint arXiv:1310.0696
    [55] Reinhold, T., Reiners, A., & Basri, G. 2013 Rotation and differential rotation of active Kepler stars, Astronomy & Astrophysics, Volume 560, id.A4, 19 pp
    [56] Roettenbacher, R. M., Monnier, J. D., Harmon, R. O., & et al. 2013, Imaging Starspot Evolution on Kepler Target KIC 5110407 Using Light-Curve Inversion, ApJ, 767, 60
    [57] Roy, J.-R., 1977, The north-south distribution of major solar flare events, sunspot magnetic classes and sunspot areas /1955-1974/, Solar Physics, vol. 52, Apr. 1977, p. 53-61
    [58] Rust, D. M., 1972, Flares and Changing Magnetic Fields, Solar Physics, Volume 25, Issue 1, pp.141-157
    [59] Sammis, I., Tang, F., & Zirin, H. 2000, The Dependence of Large Flare Occurrence on the Magnetic Structure of Sunspots, The Astrophysical Journal, Volume 540, Issue 1, pp. 583-587
    [60] Scargle, J. D. 1982, Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data, Astrophysical Journal, Part 1, vol. 263, Dec. 15, 1982, p. 835-853
    [61] Schaefer, B. E., King, J. R., & Deliyannis, C. P. 2000, Superflares on Ordinary Solar-Type Stars, The Astrophysical Journal, Volume 529, Issue 2, pp. 1026-1030
    [62] Schaefer, B. E. 1989, A Very Low Luminosity Star with a Very Large Amplitude Flare, Bulletin of the American Astronomical Society, Vol. 21, p.1222
    [63] Severny, A. B. 1969, Solar flares and magnetic fields, Solar Flares and Space Research, Proceedings of a Symposium, held on the occasion of the 11th Plenary Meeting of the Committee on Space Research, held in Tokyo, Japan, May 9-11, 1968. Edited by C. de Jager and Z. Svestka. Amsterdam: North-Holland Publication Co., 1969., p.38
    [64] Shakhovskaya, N. I. 1989, Stellar flare statistics - Physical consequences, Solar Physics, vol. 121, no. 1-2, 1989, p. 375-386; Discussion, p. 496.
    [65] Shibata, K., Masuda, S., Shimojo, M., & et al. 1995, Hot-Plasma Ejections Associated with Compact-Loop Solar Flares, Astrophysical Journal Letters v.451, p.L83
    [66] Shibayama, T., Maehara, H., Notsu, S., & et al. 2013, Superflares on Solar-type Stars Observed with Kepler. I. Statistical Properties of Superflares, The Astrophysical Journal Supplement, Volume 209, Issue 1, article id. 5, 13 pp
    [67] Skumanich, A. 1972, Time Scales for CA II Emission Decay, Rotational Braking, and Lithium Depletion, Astrophysical Journal, vol. 171, p.565
    [68] Spiegel, E. A. & Zahn, J. P. 1992, The solar tachocline, Astronomy and Astrophysics, vol. 265, no. 1, p. 106-114
    [69] Stark, C. C., Boss, A. P., Weinberger, A. J., & et al. 2013, A Search for Exozodiacal Clouds with Kepler, ApJ, 764, 195
    [70] Still, M., & Barclay, T. 2012, Astrophysics Source Code Library, 8004
    [71] Švestka, Z. 1971, Solar Particle Events, Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 270, Issue 1202, pp. 157-165
    [72] Tsurutani, B.T., Gonzalez, W.D., Lakhina G.S., & Alex, S. 2003, The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108, 1268, SSH 1-1,
    [73] Tanaka, K. 1991, Studies on a very flare-active delta group - Peculiar delta SPOT evolution and inferred subsurface magnetic rope structure, Solar Physics (ISSN 0038-0938), vol. 136, Nov. 1991, p. 133-149
    [74] Vaughan, A. H., Preston, G. W., Baliunas, S. L., & et al. 1981, Stellar rotation in lower main-sequence stars measured from time variations in H and K emission-line fluxes. I - Initial results, Astrophysical Journal, Part 1, vol. 250, Nov. 1, 1981, p. 276-283
    [75] Walkowicz, L. M., & Basri, G. S., 2013, Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars, Monthly Notices of the Royal Astronomical Society, Volume 436, Issue 2, p.1883-1895
    [76] Walkowicz, L. M., Basri, G., Batalha, N., & et al. 2011, White-light Flares on Cool Stars in the Kepler Quarter 1 Data, The Astronomical Journal, Volume 141, Issue 2, article id. 50, 9 pp
    [77] Wang, L., Lin, R. P., Krucker, S., & et al. 2006, Evidence for double injections in scatter-free solar impulsive electron events, Geophysical Research Letters, Volume 33, Issue 3, CiteID L03106
    [78] Warwick, C. S. 1966, Sunspot Configurations and Proton Flares, Astrophysical Journal, vol. 145, p.215
    [79] Watanabe, K., Krucker, S., Hudson, H., & et al. 2010, G-band and Hard X-ray Emissions of the 2006 December 14 Flare Observed by Hinode/SOT and Rhessi, The Astrophysical Journal, Volume 715, Issue 1, pp. 651-655
    [80] Zhang, H. 1995, Formation of magnetic shear and an electric current system in an emerging flux region, Astronomy and Astrophysics, v.304, p.541
    [81] Zhou, A. H., Li, J. P., & Wang, X. D. 2011, A Study of a New Increasing Submillimeter Spectral Component of an X28 Solar Flare, The Astrophysical Journal, Volume 727, Issue 1, article id. 42, 5 pp

    QR CODE
    :::