跳到主要內容

簡易檢索 / 詳目顯示

研究生: 錢伊筠
Yi-Yun Chien
論文名稱: WRF模式Double-moment雲微物理參數化法對於SoWMEX IOP-4個案降水模擬之敏感度研究
The sensitivity study of precipitative simulation of WRF model double-moment microphysics scheme for the SoWMEX IOP-4 case
指導教授: 楊明仁
Ming-jen Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 98
語文別: 中文
論文頁數: 130
中文關鍵詞: 雙變數雲微物理參數法WRF模式西南氣流實驗
外文關鍵詞: WRF model, double-moment scheme, SoWMEX, TiMREX
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以SoWMEX實驗期間 IOP-4個案(2008年6月1日至4日)進行研究,藉由密集觀測資料與WRF(the Weather Research and Forecasting Model)模式中使用不同雲微物理參數化法的降水模擬結果進行比對,希望能瞭解WRF模式對於台灣地區梅雨鋒面個案的模擬能力。本研究共選取四種雙變數(double-moment)雲微物理參數化法(Morrison方案, Thompson方案, WDM5方案, WDM6方案),以及兩種單變數(single-moment)雲微物理參數化法(WSM5方案,WSM6方案)進行測試。
    本研究選取的個案是一道滯留在台灣附近的梅雨鋒面系統,伴隨著旺盛的西南氣流,並且在2008年6月2日和3日兩天都於高屏一帶的山坳前產生明顯的地形降水。模式模擬的綜觀尺度地面氣壓場和風場,以及西南氣流上游區域與主要密集觀測區域的模式探空結果,皆能合理的模擬出與觀測資料相似的結構,惟模擬風速較觀測風速弱約30%。
    七股雷達的觀測回波結果顯示IOP-4期間有兩波主要的降水系統經過高屏地區,模擬的雷達回波圖也大致顯示相似的結果。然而第一波降水系統的降水模擬結果和觀測的地面累積降水分佈較為相近,因此針對第一波降水系統進行與NCAR/S-pol雷達資料之雲微物理特徵比較。結果顯示,在六種雲微物理參數化法之中,Morrison scheme對於這一波降水系統雲微物理垂直結構的模擬與觀測結果較相近。
    就各種水相粒子混合比的平均場特徵而言,單以六種雲微物理方案對於第一波降水系統的模擬結果來討論,Morrison方案較不會對於特定種類的水相粒子產生偏差,Thompson方案傾向於產生大量的雪。WSM5、WDM5、WSM6、WDM6方案中,有考慮軟雹的WSM6和WDM6方案的雪較少,沒有考慮軟雹的WSM5、WDM5方案的雪較多。另外,WDM5和WDM6有計算水相粒子的粒子濃度,因此二者的水相粒子混合比分佈特徵類似。


    The heavy rainfall case on 1-3 June 2008, also categorized as the IOP-4 event, during the SoWMEX/TiMREX field experiment is investigated in this study. The WRF(the Weather Research and Forecasting Model) model results are compared with the SoWMEX data, which has highly spatial and temporal resolution, in order to evaluate the WRF model ability to simulate the Mei-Yu frontal rainfall near Taiwan area. Two single-moment microphysics schemes and four double-moment microphysics schemes are chosen to perform sensitivity tests.
    This rainfall event was associated with a stationary Mei-Yu front, and was accompanied by the surge of southwesterly flow from the South China Sea. Strong interactions of the Mei-yu front with steep terrains over southern Taiwan produced torrential precipitation over southern and southwestern Taiwan on 2-3 June 2008. The WRF-simulated synoptic pressure field, wind pattern and sounding structure were consistent with the observation data, but the simulated wind speed is 30% weaker than the observed speed from the DongSha sounding data.
    Radar echoes at Chigu station show that two precipitation systems encountered southern Taiwan during the IOP-4 period, and the simulated radar echoes also show similar evolution. For the first precipitation system, the simulated surface precipitation is in better agreement with observation data than the second system. Thus, the microphysics features of the first system are further compared with the NCAR/S-pol radar data. It is found that Morrison scheme simulates the vertical structure reasonably well, compared to other five schemes.
    The area-mean mixing ratio of each hydrometeor from the six microphysics scheme is compared for the first precipitation system. Morrison scheme is not biased toward a specific type of hydrometer; Thompson scheme tends to produce a large amount of snow. Compared to WSM5 and WDM5 scheme, WSM6 and WDM6 scheme produced less amount of snow, because of the considering of graupel. In addition, WDM5 and WDM6 schemes both calculate the number concentration and mixing ratio of liquid hydrometeors, thus they show similar distribution of liquid hydrometeors.

    中文提要 …………………………………………………………… i 英文提要 …………………………………………………………… ii 目錄 …………………………………………………………… iii 表目錄 …………………………………………………………… v 圖目錄 …………………………………………………………… vi 第一章 緒論……………………………………………………… 1 1-1 研究動機………………………………………………… 1 1-2 文獻回顧………………………………………………… 3 1-3 論文結構………………………………………………… 6 第二章 資料來源與研究方法…………………………………… 7 2-1 資料來源………………………………………………… 7 2-1-1 觀測資料之來源………………………………………… 7 2-1-2 模式初始資料之來源…………………………………… 7 2-2 研究方法………………………………………………… 7 第三章 個案天氣分析…………………………………………… 9 第四章 模式架構與實驗設計…………………………………… 11 4-1 模式簡介………………………………………………… 11 4-2 實驗設計………………………………………………… 13 4-3 雲微物理參數化法簡介………………………………… 14 第五章 模式結果………………………………………………… 22 5-1 綜觀環境模擬…………………………………………… 22 5-2 探空資料之校驗………………………………………… 22 5-3 模式降水系統與觀測降水系統的演變之對照………… 24 5-4 第三層網域降水分佈之校驗…………………………… 25 5-4-1 第一波降水系統的降水分佈…………………………… 26 5-4-2 第二波降水系統的降水分佈…………………………… 28 5-5 第四層網域雷達回波之比對…………………………… 28 5-6 垂直速度平均場………………………………………… 29 5-7 雲微物理特徵之校驗…………………………………… 31 5-7-1 降水系統中對流降水區的垂直雷達回波特徵………… 32 5-7-2 降水系統中對流降水區的垂直降水粒子分佈特徵…… 33 5-7-3 降水系統中層狀降水區的垂直雷達回波特徵………… 34 5-7-4 降水系統中層狀降水區的垂直降水粒子分佈特徵…… 34 5-8 混合比平均場…………………………………………… 35 5-8-1 冰相粒子………………………………………………… 36 5-8-2 水相粒子………………………………………………… 37 5-9 混合比時空平均場……………………………………… 38 第六章 總結……………………………………………………… 42 參考文獻 …………………………………………………………… 46 附錄 …………………………………………………………… 52

    劉妍利, 2007: 梅雨降水系統的雙偏極化雷達資料分析與WRF模式模擬研究, 中央大學大氣物理研究所碩士論文。
    Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. І: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815-1842.
    Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.
    Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986; Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Appl. Meteorol., 25, 1658-1680.
    Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.
    Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part І: Description. J. Atmos. Sci., 51, 249-280.
    Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parameterization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 1997–2017.
    Fletcher, N. H., 1962: The physics of rain clouds. Cambridge Univ. Press, 390pp.
    Grell, G.A. and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geoph. Res. Let., 29, NO 14., 10.1029/2002GL015311.
    Gettelman A., H. Morrison, and S. J. Ghan, 2008: A New Two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-column and global results. J. Climate Appl. Meteor., 21, 3660–3679.
    Heymsfield, A. J., and L. J. Donner, 1990: A scheme for parameterizing ice cloud water content in general circulation models. J. Atmos. Sci., 47, 1865–1877.
    ——, and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57, 916–938.
    Hong, Song-You, Hua-Lu Pan, 1996: Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev., 124, 2322-2339.
    ——, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to
    ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.
    ——, and J.-O. J. Lim, 2006: The WRF single-moment 6-class
    microphysics scheme. Journal of the Korean Meteorological society, 42, 129–151.
    Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156–162.
    ——, 1997: Stratiform precipitation in regions of convection: A
    meteorological paradox? BAMS, 78, 2179-2196.
    Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the forecast research department of the MRI. Technical Reports of the Meteorological Research Institude, No. 28.
    Kessler, E., III, 1969: On the distribution and continuity of water substance in atmospheric circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.
    Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: Attempt of classification. J. Atmos. Sci., 65, 1721-1748.
    Kong, F., and M. K. Yau, 1997: An explicit approach to microphysics in MC2. Atmos.–Ocean, 35, 257–291.
    Lim K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate Models. Mon. Wea. Rev.,138, 1587-1612.
    Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk
    parameterization of the snow field in a cloud model. J. Climate
    Appl. Meteor., 22, 1065–1092.
    Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.
    Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part Ⅱ: The two-moment scheme. Atmos. Res., 45, 3-39.
    Mlawer, E. J., and S. A. Clough, 1997: On the extension of RRTM to the shortwave region. In Proceedings of the Sixth Atmospheric Measurement (ARM) Science Team Meeting, CONF-9603149, pp.223-226. U.S. Department of Energy, Washington, D.C.
    Morrison, H., and J. O. Pinto, 2006: Intercomparison of bulk cloud
    microphysics schemes in mesoscale simulations of springtime
    Arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134,
    1880–1900.
    ——, and A. Gettelman, 2008: A new two-moment bulk stratiform
    cloud microphysics scheme in the Community Atmosphere
    Model, version 3 (CAM3). Part I: Description and numerical tests.
    J. Climate, 21, 3642–3659.
    ——, M. D. Shupe, and J. A. Curry, 2003: Modeling clouds observed
    at SHEBA using a bulk parameterization implemented into a
    single-column model. J. Geophys. Res., 108, 4255,
    doi:10.1029/2002JD002229.
    ——, J. A. Curry, and V. I. Khvorostyanov, 2005: A new
    doublemoment microphysics scheme for application in cloud
    and climate models. Part 1: Description. J. Atmos. Sci., 62,
    1665–1677.
    ——, G. Thompson, V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991-1007.
    Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud. J. Meteor. Soc. Japan, 68, 107-128.
    Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119-2124.
    Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit
    forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107.
    Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and
    microscale structure and organization of clouds and precipitation in mid-latitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972.
    Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59, 265–281.
    Shi, J. J., W.-K. Tao, S. Lang, S. S. Chen, C. Peters-Lidard, and S.-Y. Hong, 2007: An improved bulk microphysical scheme for studying precipitation processes: Comparisons with other schemes. Proc. 2007 AGU Joint Assembly, Acapulco, Mexico. American Geophysical Union. [Proceeding is available at http:// www.agu.org]
    Solomon, A., H. Morrison, O. Persson, M. D. Shupe, J.-W. Bao, 2009: Investigation of microphysical parameterizations of snow and ice in arctic clouds during M-PACE through model–observation comparisons. Mon. Wea. Rev., 137, 3110-3128.
    Tao, W.-K., and J. S. Simpson, 1993: Goddard cumulus ensemble model. Part І: Model description. Terr. Atmos. Oceanic Sci., 4, 35-72.
    Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit
    forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542.
    ——, R. M. Rasmussen, and K. Manning, 2008: Explicit forecasts of
    winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.
    Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355-371.
    Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south Florida. J. Appl. Meteor., 19, 1037–1063.
    Verlinde, J., P. J. Flatau, and W. R. Cotton, 1990: Analytical solutions to the collection growth equation: Comparison with approximate methods and application to the cloud microphysics parameterization schemes. J. Atmos. Sci., 47, 2871–2880.
    Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 29–62.
    Wang, C., and J. Chang, 1993: A three-dimensional numerical model of cloud dynamics, microphysics, and chemistry. Part I: Concepts and formulation. J. Geophys. Res., 98, 14827-14844.
    Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration. Part I: Dynamics and microphysics, J. Geophys. Res., 110, D21211, doi:10.1029/2004JD005720.
    Wisner, C., H. D. Orville, and C. Myers, 1972: A numerical model of a
    hail-bearing cloud. J. Atmos. Sci., 29, 1160-1181.
    Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part1: Model development and preliminary testing. J. Atmos. Sci., 42, 1487-1509.
    網路資料:SoWMEX/TiMREX Field Catalog。取自http://sowmex.cwb.gov.tw/2008/

    QR CODE
    :::