跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李弘霖
Hung-Lin Lee
論文名稱: Novel Crystallization Processes for Preparing Various Crystal Forms of Active Pharmaceutical Ingredients
指導教授: 李度
Tu Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 246
中文關鍵詞: 結晶製藥工程多形晶體共晶體鹽類
外文關鍵詞: Crystallization, Pharmaceutical Engineering, Polymorph, Co-crystal, Salt
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文介紹了台灣製藥業的概況,由於生產和管理上的方便,準確的劑量控制以及穩定性高,使藥錠成為最常用的劑型。
    結晶是化學工程及製藥工程中關鍵的單元操作,用於生產高結晶性及高純度的產物,並確保晶體的質量和後續製程的性質。另一方面,結晶亦是重要的分離和純化製程,可將化學合成中所衍生的中間產物及副產物分離。在製藥工業中,結晶操作是活性藥物成分(API)製造的最後一步,更是最關鍵的一步,能夠控制結晶體的性質,多晶型和尺寸分佈。
    在本論文中,研究包含從溶劑到無溶劑的結晶製程,以及從批次處理到連續式結晶製程,藉由這些新穎結晶手法來製備API不同的晶型,如:多晶型(第三章),共晶(第四章)和鹽類(第五章)等。
    第三章,在500毫升的批式結晶槽中透過反應的耦合,成功地製備出40克乙醯胺酚的介穩態晶體。其工作原理除了溫度冷卻外,藉由其耦合反應使乙醯胺酚的溶解度曲線大幅地降低。
    第四章,開發三種共晶的新策略,直接從化學合成到溫度冷卻來組裝四種的藥物共晶通過。基於液體輔助研磨,開發了直接共晶組裝的篩選方法,並建立了從化學合成到溫度冷卻的三成份相圖。
    第五章,研究用連續式且無溶劑添加的雙螺桿熔融擠出機來製備氟哌啶醇與馬來酸的鹽類藥物的可行性,接著,探討操作溫度和螺桿構型對鹽類形成的影響,並發現此二參數為重要參數。由溶液結晶,液體輔助研磨和熱輔助研磨所製備的鹽類,與通過熔融擠出機所製得的鹽類進行比較,此無溶劑雙螺桿熔融擠出法可應用於連續式製造並易於製程放大。


    An overview on (Taiwan’s) pharmaceutical industry was presented. Making tablets of drug has become the most commonly used dosage form due to the ease of manufacturing and administration, accurate dosing, and stability (long shelf life).
    Crystallization is one of the oldest unit operations in a chemical engineering sense, which is an important separation and purification process employed for producing highly crystalline products, isolating from intermediates and byproducts in the synthesis, achieving a high degree of purity, and determining crystal quality and handling characteristics. In the pharmaceutical industry, crystallization operation often serves as the crucial final step of active pharmaceutical ingredient (API) manufacturing, and enables the control of crystal habit, polymorph and size distribution, which have profound effects on the downstream behaviors.
    In this dissertation, the novel crystallization processes for preparing various crystal forms of APIs including polymorph (Chapter 3), co-crystal (Chapter 4), and salt (Chapter 5) from solvent-based to solvent-free processes and from batch to continuous processes.
    More than 40 g of Form II acetaminophen crystals were made successfully in a 500 mL batch reactor by coupling the acetylation of p-aminophenol with neutralization of acetic acid before the crystallization of Form II crystals in an aqueous solution. The novel working principle involves a sudden drop in the solubility curves of acetaminophen from the acetic acid-water environment to the acetate-water system in addition to temperature cooling but without agitation.
    Four pharmaceutical co-crystals were assembled directly via chemical synthesis by cooling under three new strategies. The screening method for direct co-crystal assembly by a chemical reaction was developed based on liquid-assisted grinding. The ternary phase diagram involving a chemical reaction and co-crystallization was established for 2:1 co-crystal of benzoic acid-sodium benzoate.
    The potential for preparing pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation was feasible. The effects of operating temperature and screw configuration on salt formation were also investigated, and identified as key processing parameters. Salts were also prepared by solution crystallization, liquid-assisted grinding and heat-assisted grinding, and compared with those obtained by melt extrusion. This solvent-free twin-screw melt extrusion method for the preparation of pharmaceutical salt is amenable to continuous manufacturing and easy to scale up.

    摘 要 i ABSTRACT iii ACKNOWLEDGEMENT v MY PUBLICATION LIST viii TABLE OF CONTENTS xii LIST OF FIGURES xvii LIST OF TABLES xxv LIST OF SCHEMES xxvi CHAPTER 1 AN OVERVIEW ON PHARMACEUTICAL INDUSTRY 1 1.1 Pharmaceuticals 1 1.2 Drug Discovery to Marketing 2 1.3 The Role of Patent in Pharmaceutical Industry 7 1.4 Pharmaceuticals versus Biopharmaceuticals 12 1.5 The Pharmaceutical Industry in Taiwan 16 1.5.1 Western Medicine 21 1.5.2 Active Pharmaceutical Ingredient (API) 23 1.5.3 Biopharmaceutical (Biologic) 25 1.5.4 Traditional Chinese Medicine (TCM) 27 CITED REFERENCES 35 CHAPTER 2 PHARMACEUTICAL CRYSTALLIZATION AND VARIOUS SOLID FORMS 42 2.1 What Is Crystallization? 42 2.2 Unit Operations in Pharmaceutical Industry 61 2.3 Batch versus Continuous Processing 69 2.4 Solid Forms of Active Pharmaceutical Ingredient (API) 72 CITED REFERENCES 76 CHAPTER 3 LARGE-SCALE CRYSTALLIZATION OF A PURE METASTABLE POLYMORPH BY REACTION COUPLING 85 3.1 Introduction 85 3.2 Experimental Section 89 3.2.1 Large-scale Crystallization with Reaction Coupling 89 3.2.2 Solubility Values Measurement 89 3.2.3 Solution Complex Effect by Higuchi’s Plot 90 3.2.4 Polymorphic Transformation Test 90 3.2.5 Dissolution Rate Test 91 3.2.6 Stability Test 91 3.3 Results and Discussion 92 3.4 Conclusions 107 CITED REFERENCES 108 CHAPTER 4 DIRECT CO-CRYSTAL ASSEMBLY FROM SYNTHESIS TO CO-CRYSTALLIZATION 113 4.1 Introduction 113 4.2 Experimental Section 116 4.2.1 Liquid-Assisted Grinding for Direct Co-crystal Assembly 116 4.2.2 Solvent Selection for Cooling Co-crystallization 116 4.2.3 Cooling Co-crystallization 119 4.2.4 Direct Assembly from Chemical Synthesis to Co-crystallization 119 4.2.4.1 1:1 Co-crystal of Acetaminophen-Theophylline 119 4.2.4.2 2:1 Co-crystal of Acetaminophen-Naphthalene 120 4.2.4.3 1:1 Co-crystal of Acetaminophen-Theophylline with the Presence of 3-Acetamidophenol 120 4.2.4.4 1:1 Co-crystal of Aspirin-Carbamazepine 120 4.2.4.5 1:2 Co-crystal of Sodium Benzoate-Benzoic Acid 120 4.2.4.6 1:1 Co-crystal of Acetaminophen-Caffeine 121 4.2.5 Establishment of Ternary Phase Diagram (TPD) 121 4.3 Results and Discussion 122 4.4 Conclusions 140 CITED REFERENCES 141 CHAPTER 5 CONTINUOUS PREPARATION OF 1:1 HALOPERIDOL-MALEIC ACID SALT BY NOVEL SOLVENT-FREE METHOD USING TWIN SCREW MELT EXTRUDER 147 5.1 Introduction 147 5.2 Experimental Section 153 5.2.1 pH-Solubility Profile 153 5.2.2 Salt Preparation via Solution Crystallization 154 5.2.3 Salt Screening via Neat Grinding, Liquid-Assisted Grinding, and Heat-Assisted Grinding 154 5.2.4 Single Crystal Growth 155 5.2.5 Continuous Salt Preparation via Twin Screw Extrusion (TSE) 155 5.2.6 Characterization of Physicochemical Properties of Salts 157 5.2.6.1 Optical Microscopy 157 5.2.6.2 Differential Scanning Calorimetry (DSC) 157 5.2.6.3 Powder X-ray Diffraction (PXRD) 158 5.2.6.4 Thermogravimetric Analysis (TGA) 158 5.2.6.5 Solution Proton Nuclear Magnetic Resonance (1H-NMR) 158 5.2.6.6 Transmission Fourier-Transform Infrared (FTIR) Spectroscopy 159 5.2.6.7 Single Crystal X-ray Diffraction (SXD) 159 5.2.7 Moisture Study and Stability Analysis 159 5.2.8 Investigation of Eutectic Behavior 160 5.3 Results and Discussion 162 5.3.1 Feasibility of Salt Formation by pH-Solubility Relationship 162 5.3.2 Salt Formation by Solution Crystallization 168 5.3.3 Salt Formation by Grinding 172 5.3.4 Salt Formation by Twin Screw Extrusion (TSE) 174 5.3.5 Confirmation of Salt Formation 181 5.3.6 Moisture Sorption 195 5.3.7 Eutectic Formation 196 5.3.8 Possible Mechanism of Salt Formation 197 5.4 Conclusions 201 CITED REFERENCES 203 CHAPTER 6 CONCLUDING REMARKS & FUTRUE WORKS 212 CITED REFERENCES 217

    Chapter 1
    am Ende, D. J. Chemical Engineering in the Pharmaceutical Industry: An Introduction. In Chemical Engineering in the Pharmaceutical Industry, am Ende, D. J., Eds.; John Wiley & Sons, Inc., 2011; pp. 3-20.
    Ng, R. Drug: From Discovery to Approval; 2nd Ed.; John Wiley & Sons, Inc., 2009; pp. 1-18.
    Lewis, N. A. A Tracking Tool for Lean Solid-Dose Manufacturing. Pharm. Tech. 2006, 30 (10), 94-108.
    FDA: Innovation and Continuous Improvement in Pharmaceutical Manufacturing (2004) (https://www.fda.gov/ohrms/dockets/ac/04/briefing/2004-4080b1_01_manufSciWP.pdf, last assessed on January 9, 2018).
    Ahlawat, H.; Chierchia, G.; van Arkel, P. The Secret of Successful Drug Launches (March 2014) (http://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/the-secret-of-successful-drug-launches, last assessed on January 9, 2018).
    WikiHow: How to Launch a Pharmaceutical Product (http://www.wikihow.com/Launch-a-Pharmaceutical-Product, last assessed on January 9, 2018).
    Intellectual Property Law: Patents, Trademarks and Copyright (http://www.alllaw.com/topics/intellectual_property, last assessed on April 7, 2017).
    Mohan, C.; Puranik, S. B.; Sagar, P.; Sreenivasa, S.; Rao, M. C. Patents - An Important Tool for Pharmaceutical Industry. Res. Rev. J. Pharm. Nanotechnol. 2014, 2, 12-16.
    Gassmann, O.; Reepmeyer, G.; von Zedtwitz, M. Leading Pharmaceutical Innovation: Trends and Drivers for Growth in the Pharmaceutical Industry; Springer-Verlag Berlin Heidelberg: New York, 2004; pp. 117-138.
    Lehman, B. The Pharmaceutical Industry and the Patent System (https://users.wfu.edu/mcfallta/DIR0/pharma_patents.pdf, last assessed on January 9, 2018).
    FDA: What Are Generic Drugs? (2015) (https://www.fda.gov/drugs/resourcesforyou/consumers/buyingusingmedicinesafely/understandinggenericdrugs/ucm144456.htm, last assessed on April 12, 2017).
    Generic Drug FAQs (October 2016) (https://www.drugs.com/generic_drugs.html, last assessed on January 9, 2018).
    Saha, C. N.; Bhattacharya, S. Intellectual Property Rights: An Overview and Implications in Pharmaceutical Industry. J. Adv. Pharm. Technol. Res. 2011, 2 (2), 88-93.
    Rader, R. A. (Re)defining Biopharmaceutical. Nat. Biotechnol. 2008, 26, 743-751.
    FDA: What Is Biological Products? (https://www.fda.gov/aboutfda/transparency/basics/ucm194516.htm, last assessed on May 19, 2017).
    FDA: Information for Consumers (Biosimilars) (https://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/approvalapplications/therapeuticbiologicapplications/biosimilars/ucm241718.htm, last assessed on May 19, 2017).
    Akers, M. J. Special Challenges in Production of Biopharmaceutical Dosage Forms. BioProcess Int. 2006, 4 (11), 36-43.
    FDA: Chemistry, Manufacturing, and Controls (CMC) and Good Manufacturing Practices (GMPs): The Big Picture of a Long-term Commitment. (https://www.accessdata.fda.gov/static/cvm/cormier/CMCsandGMPs.pptx, last assessed on January 9, 2018).
    Pharma Asia: Taiwan Pharmaceutical Industry: The Need for Expansion (October 2009) (https://www.pharmaasia.com/2009/10/taiwan-pharmaceuticals-industry-the-need-for-expansion/, last assessed January 9, 2018).
    MoEA: 2015 Introduction to Biotechnology and Pharmaceutical Industries in Taiwan, Rep. of China (http://www.biopharm.org.tw/downloads_content.php?li=1, last assessed on January 9, 2018, all materials from the MoEA can be downloaded from the link).
    MoEA: 2016 Introduction to Biotechnology and Pharmaceutical Industries in Taiwan, Rep. of China.
    MoEA: 2017 Introduction to Biotechnology and Pharmaceutical Industries in Taiwan, Rep. of China.
    MoEA: 2016 Taiwan Biotechnology Industry White Paper.
    Fulco, M. Boosting Taiwan’s Biopharma Sector (May 2016) (https://topics.amcham.com.tw/2016/05/boosting-taiwans-biopharma-sector/, last assessed on January 9, 2018).
    PricewaterhouseCoopers (PwC): Taiwan Health Industries Outlook (January 2015).
    FDA Issues Warning Letters to India and China API Manufacturers (https://connect.dcat.org/blogs/pharma-news/2017/03/16/fda-issues-warning-letters-to-india-and-china-api-manufacturers#.WVtiC4h97IU, last assessed on January 9, 2018).
    Stanton, D. Increased US FDA Oversight Driving Recent China Plant Warnings (http://www.in-pharmatechnologist.com/Regulatory-Safety/Increased-US-FDA-oversight-driving-recent-China-plant-warnings, last assessed on January 9, 2018).
    Li, F.; Vijayasankaran, N.; Shen, A.; Kiss, R.; Amanullah, A. Cell Culture Processes for Monoclonal Antibody Production. mAbs 2010, 2 (5), 466-477.
    Particle Sciences: Protein Structure (Technical Brief 2009 Volume 8) (http://www.particlesciences.com/news/technical-briefs/2009/protein-structure.html, last assessed on January 9, 2018).
    Fulco, M. Scandal Widens for Taiwan Pharma Firm OBI (May 2016) (https://topics.amcham.com.tw/2016/05/scandal-widens-for-taiwan-pharma-firm-obi/, last assessed on January 9, 2018).
    Lane, E. FiercePharma: Taiwan’s OBI Pharma Fails to Impress Investors after ASCO Presentation (June 2016) (http://www.fiercepharma.com/pharma-asia/taiwan-s-obi-pharma-fails-to-impress-investors-after-asco-presentation, last assessed on January 9, 2016).
    OBI Pharma News: OBI Pharma holds EOP2 meeting with US FDA (http://www.obipharma.com/2017/01/obi-pharma-holds-eop2-meeting-with-us-fda/, last assessed on January 9, 2018).
    Acupuncture and Herbology Clinic: Chinese Herbal Medicine (http://www.acuherbology.com/about-chinese-herbal-medicine.html, last assessed on January 9, 2018).
    Australian Acupuncture & Chinese Medicine Association Ltd: Acupuncture and Chinese Medicine (http://www.acupuncture.org.au/AcupunctureandChinesemedicine/ChineseHerbalMedicine.aspx, last assessed on January 9, 2018).
    Shang, A.; Huwiler, K.; Nartey, L.; Jüni, P.; Egger, M. Placebo-controlled Trials of Chinese Herbal Medicine and Conventional Medicine-Comparative Study. In. J. Epidemiol. 2007, 36 (5), 1086-1092.
    Wikipedia: Chinese Herbology (https://en.wikipedia.org/wiki/Chinese_herbology, last assessed on January 9, 2018).
    NIH: Traditional Chinese Medicine: In Depth (https://nccih.nih.gov/health/whatiscam/chinesemed.htm, last assessed on January 9, 2018).
    Pacific Bridge Medical: Taiwan’s Pharmaceutical Industry: Market Overview (March 2002) (http://www.pacificbridgemedical.com/news-brief/taiwan-s-pharmaceutical-industry-market-overview/, last assessed on January 9, 2018).
    McCarthy, N. Americans Visit Their Doctor 4 Times a Year. People in Japan Visit 13 Times a Year (September 2014) (https://www.forbes.com/sites/niallmccarthy/2014/09/04/americans-visit-their-doctor-4-times-a-year-people-in-japan-visit-13-times-a-year-infographic/#3534a132e347, last assessed on January 9, 2018).
    Pacific Bridge Medical: Asia Business Strategy Consulting for Pharmaceuticals (http://www.pacificbridgemedical.com/business-development-services/pharmaceutical/business-strategy/, last assessed on January 9, 2018).
    Mintz, C. S. Financial Crisis Reshaping the Life Sciences Industry (April 2009) (http://www.sciencemag.org/careers/2009/04/financial-crisis-reshaping-life-sciences-industry, last assessed on January 9 2018).
    Sagonowsky, E. Despite Diplomatic Tensions, Taiwan's Pharmaceutical Market Value Will Hit $8.4 Billion by 2020 (http://www.fiercepharma.com/marketing/despite-diplomatic-tensions-taiwan-s-pharmaceutical-market-value-will-hit-8-4-billion-by, last assessed on January 9, 2018).

    Chapter 2
    Helmenstine, A. M. Snowflake Chemistry – Answers to Common Questions (https://www.thoughtco.com/snowflake-chemistry-answers-608505, last assessed on January 12, 2018).
    Knight, C. A. Why Do Snowflakes Crystallize into Such Intricate Structures? (https://www.scientificamerican.com/article/why-do-snowflakes-crystal/, last assessed on January 12, 2018).
    Wells, S. The Science behind Snowflakes (https://www.stevespanglerscience.com/blog/2013/01/21/the-science-behind-snowflakes/, last assessed on January 12, 2018).
    Cook, K. L. K.; Hartel, R. W. Mechanisms of Ice Crystallization in Ice Cream Production. Compr. Rev. Food Sci. Food Saf. 2010, 9 (2), 213-222.
    Eisner, M. D.; Wildmoser, H.; Windhab, E. J. Air Cell Microstructuring in a High Viscous Ice Cream Matrix. Colloids Surf. A 2005, 263 (1-3), 390-399.
    Loisel, C.; Keller, G.; Lecq, G.; Bourgaux, C.; Ollivon, M. Phase Transitions and Polymorphism of Cocoa Butter. J. Am. Oil Chem. Soc. 1998, 75 (4), 425-439.
    Le Révérend, B. J. D.; Fryer, P. J. Bakalis, S. Modelling Crystallization and Melting Kinetics of Cocoa Butter in Chocolate and Application to Confectionery Manufacturing. Soft Matter 2009, 5 (4), 891-902.
    Mullin, J. W. Solution and Solubility. Crystallization, 3rd Ed.; Butterworth-Heinemann, 1993; pp. 81-127.
    Lee, T.; Chen, Y. H.; Wang, Y. W. Effects of Homochiral Molecules of (S)-(+)-Ibuprofen and (S)-(–)-Sodium Ibuprofen Dihydrate on the Crystallization Kinetics of Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate. Cryst. Growth Des. 2008, 8 (2), 415-426.
    Lee, H. L.; Lin, H. Y.; Lee, T. Large-Scale Crystallization of a Pure Metastable Polymorph by Reaction Coupling. Org. Proc. Res. Dev. 2014, 18 (4), 539-545.
    Myerson, A. S.; Ginde, R. Crystals, Crystal Growth and Nucleation. In Handbook of Industrial Crystallization, Myerson, A. S., Eds.; Butterworth-Heinemann, 1993; pp. 33-63.
    Myerson, A. S. Solutions and Solution Properties. In Handbook of Industrial Crystallization, Myerson, A. S., Eds.; Butterworth-Heinemann, 1993; pp. 1-31.
    Kuldipkumar, A.; Kwon, G. S.; Zhang, G. G. Z. Determining the Growth Mechanism of Tolazamide by Induction Time Measurement. Cryst. Growth Des. 2007, 7 (2), 234-242.
    Lee, T.; Tsai, Y. C.; Lee, H. L.; Lin, T. Y.; Chang, Y. H. Metal-Organic Framework Engineering: Directed Assembly form Molecules to Spherical Agglomerates. J. Taiwan Inst. Chem. Eng. 2016, 62, 10-20.
    Mitchell, N. A.; Frawley, P. J.; Ó’Ciardhá, C. T. Nucleation Kinetics of Paracetamol-Ethanol Solutions from Induction Experiments Using Lasentec FBRM®. J. Cryst. Growth 2011, 321 (1), 91-99
    Lee, T.; Lin, H. Y.; Lee, H. L. Engineering Reaction and Crystallization and the Impact on Filtration, Drying, and Dissolution Behaviors: The Study of Acetaminophen (Paracetamol) by In-Process Controls. Org. Proc. Res. Dev. 2013, 17 (9), 1168-1178.
    Chen, J.; Sarma, B.; Evans, J. M. B.; Myerson, A. S. Pharmaceutical Crystallization. Cryst. Growth Des. 2011, 11 (4), 887-895.
    Mullin, J. W. Nucleation. Crystallization, 3rd Ed.; Butterworth-Heinemann, 1993; pp. 172-201.
    Erdemir, D.; Lee, A. Y.; Myerson, A. S. Nucleation of Crystals from Solution: Classical and Two-Step Models. Acc. Chem. Res. 2009, 42 (5), 621-629.
    Mettler Toledo: Recent Advances for Seeding a Crystallization Process – A Review of Modern Techniques (https://www.mt.com/us/en/home/library/white-papers/automated-reactors/Seeding-A-Crystallization-Process.html?smartRedirectEvent=true, last assessed on January 15, 2018).
    Galkin, O.; Chen, K.; Nagel, R. L.; Hirsch R. E.; Vekilov, P. G. Liquid-Liquid Separation in Solutions of Normal and Sickle Cell Hemoglobin. Proc. Natl. Acad. Sci. USA 2002, 99 (13), 8479-8483.
    Talanquer, V.; Oxtoby, D. W. Crystal Nucleation in the Presence of a Metastable Critical Point. J. Chem. Phys. 1998, 109 (1), 223-227.
    Berglund, K. A. Analysis and Measurement of Crystallization Utilizing the Population Balance. In Handbook of Industrial Crystallization, Myerson, A. S., Eds.; Butterworth-Heinemann, 1993; pp. 89-101.
    Mullin, J. W. Crystal Growth. Crystallization, 3rd Ed.; Butterworth-Heinemann, 1993; pp. 202-263.
    Lecture 18. MSMPR Crystallization Model (https://www.cheric.org/files/education/cyberlecture/d201501/d201501-1801.pdf, last assessed on January 15, 2018).
    Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Continuous Co-crystallization as a Separation Technology: The Study of 1:2 Co-crystals of Phenazine-Vanillin. Cryst. Growth Des. 2012, 12 (12), 5897-5907
    Byrn, S.; Morris, K.; Comella, S.; Reducing Time to Market with a Science-Based Management Strategy. Pharm. Tech. 2005, (5), 46-56.
    Mohr, M. E. The Right Dosage Form and the Right Route of Administration: Working with Accuracy. Standards of Practice for the Pharmacy Technician; Wolters Kluwer Health / Lippincott William & Wilkins, 2010; pp. 123-144.
    Wikipedia: Route of Administration (https://en.wikipedia.org/wiki/Route_of_administration, last assessed on January 15, 2018).
    Gilani, A. Routes of Drug Administration (https://www.slideshare.net/ankit_2408/routes-of-drug-administration-1, last assessed on January 15, 2018).
    Pharma Tips: Introduction of Tablet Manufacturing Process (May 2011) (http://www.pharmatips.in/Articles/Pharmaceutics/Tablet/Introduction-Of-Tablet-Manufacturing-Process.aspx, last assessed on January 15, 2018)
    Hinz, D. C. Process Analytical Technologies in the Pharmaceutical Industry: The FDA’s PAT Initiative. Anal. Bioanal. Chem. 2006, 384 (5), 1036-1042.
    Lee, T.; Lee, J. Particle Attrition by Particle-Surface Friction in Dryers. Pharm. Tech. 2003, 27, 64-72 (May).
    Scheibelhofer, O.; Balak, N.; Wahl, P. R.; Koller, D. M.; Glasser, B. J.; Khinast, J. G. Monitoring Blending of Pharmaceutical Powders with Multipoint NIR Spectroscopy. AAPS PharmSciTech 2013, 14 (1), 234-244.
    Harnby, N. An Engineering View of Pharmaceutical Powder Mixing. Pharm. Sci. Technol. Today, 2000, 3 (9), 303-309.
    Mendez, A. S. L.; de Carli, G.; Garcia, C. V. Evaluation of Powder Mixing Operation during Batch Production: Application to Operational Qualification Procedure in the Pharmaceutical Industry. Powder Tech. 2010, 198 (2), 310-313.
    What is Granulation and Why Powder Should Be Granulated (http://formulation.vinensia.com/2011/11/what-is-granulation-and-why-powder.html, last assessed on January 15, 2018).
    Zámostný, P. Principles of Tablet Compression (http://tresen.vscht.cz/kot/wp-content/uploads/2017/01/Petr-Zamostny-tablet-compression.pdf, last assessed on January 15, 2018).
    Lee, T.; Hsu, F. B. A Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant: The Study of Acetaminophen Batches. Drug Dev. Ind. Pharm. 2007, 33 (11), 1273-1284.
    Tousey, M. D. Techceuticals: The Manufacturing Process (Volume 15 2015) (http://techceuticals.com/tech-articles/, last assessed on January 15, 2018).
    Sharma, R. Dry Granulation for OSD …..Traditional vs Current Approach (April 2017) (http://pharmapathway.com/dry-granulation-osd-traditional-vs-current-approach/, last assessed on January 15, 2018).
    Roller Compactor for Dry Granulation: The 6 Benefits that Guarantee Material Processing Success (http://www.saintytec.com/roller-compactor-for-dry-granulation/, last assessed on January 15, 2018).
    DiProspero, D. Understanding Oral Solid Dose Form (OSD) Manufacturing (March 2014) (http://www.interphex.com/RNA/RNA_Interphex_V2/2014/docs/presentations/DiProspero_Dave.pdf?v=635326523508518990, last assessed on January 15, 2018).
    Cohen, T. F. The Power of Drug Color (October 2014) (https://www.theatlantic.com/health/archive/2014/10/the-power-of-drug-color/381156/, last assessed on January 15, 2018).
    Massey, S. Making the Switch: Continuous Manufacturing vs. Batch Processing of Pharmaceuticals (May 2016) (http://xtalks.com/Continuous-And-Batch-Manufacturing-Pharmaceuticals.ashx, last assessed on January 15, 2018).
    Neuman, S. Pharmaceutical Industry Wastes $50 Billion a Year due to Inefficient Manufacturing (October 2006) (https://source.wustl.edu/2006/10/pharmaceutical-industry-wastes-50-billion-a-year-due-to-inefficient-manufacturing/, last assessed on January 15, 2018).
    Chen, C. W.; Lee, T. Round Granules of Dimethyl Fumarate by Three-in-One Intensified Process of Reaction, Crystallization, and Spherical Agglomeration in a Common Stirred Tank. Org. Proc. Res. Dev. 2017, 21 (9), 1326-1339.
    Yu, L. Continuous Manufacturing Has a Strong Impact on Drug Quality (April 2016) (https://blogs.fda.gov/fdavoice/index.php/2016/04/continuous-manufacturing-has-a-strong-impact-on-drug-quality/, last assessed on January 15, 2018).
    Yin, J.; Clayton, J. The Role of Powder Characterization in Continuous Manufacturing. Pharm. Tech. 2014, 38 (6), 44-49.
    Advanced Manufacturing: A Snapshot of Priority Technology Areas across the Federal Government (April 2016) (https://www.manufacturingusa.com/resources/advanced-manufacturing-snapshot-priority-technology-areas-across-federal-government, last assessed on January 15, 2018).
    Morissette, S. L.; Almarsson, Ö.; Peterson, M. L.; Remenar, J. F.; Read, M. J.; Lemmo, A. V.; Ellis, S.; Cima, M. J.; Gardner, C. R. High-throughput Crystallization: Polymorphs, Salts, Co-crystals and Solvates of Pharmaceutical Solids. Adv. Drug Deliv. Rev. 2004, 56 (3), 275-300.
    Stahly, G. P. Diversity in Single- and Multiple-Component Crystals. The Search for and Prevalence of Polymorphs and Co-crystals. Cryst. Growth Des. 2007, 7 (6), 1007-1026.
    Prohens, R.; Puigjaner, C. Crystal Engineering Studies: Polymorphs and Co-crystals. In Handbookof Instrumental Techniques for Materials, Chemical and Biosciences Research; Universitat de Barcelona, 2012; pp. 1-9.
    Kratochvíl, B. Solid Forms of Pharmaceutical Molecules. In Glassy, Amorphous and Nano-Crystalline Materials: Thermal Physics, Analysis, Structure and Properties; Šesták, J., Mareš, J. J., Hubík, P., Eds.; Springer Science & Business Media, 2010; Volume 8, pp. 129-140.
    Crystallics: Patent Strategy and Solid Forms Such as Salts and Polymorphs (http://www.crystallics.com/newsletter-september-2012, last assessed on Oct 20, 2017, Pharmavize in Belgium, and Crystallics and Analytical Biochemical Laboratory (ABL) in the Netherlands has been merged into Ardena in 2017).

    Chapter 3
    Lee, T.; Hung, S. T.; Kuo, C. S. Pharm. Res. 2006, 23, 2542-2555.
    Threlfall, T. L. Analyst 1995, 120, 2435-2460.
    (a) Fryer, P.; Pinschower. MRS Bull. 2000, 25, 25-29; (b) Lee, T.; Lin, M. S. Cryst. Growth Des. 2007, 7, 1803-1810; (c) Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.; Hu, J.-C.; Chen, L.-T. Chem. Eng. J. 2013, 225, 809-817; (d) Sato, K. Chem. Eng. Sci. 2001, 56, 2255-2265.
    Myrick, M. L.; Baranowski, M.; Profeta, L. T. M. J. Chem. Educ. 2010, 87, 842-844.
    Sudha, C.; Srinivasan, K. CrystEngComm 2013, 15, 1914-1921.
    Moribe, K.; Tozuka, Y.; Yamamoto, K. Adv. Drug Deliv. Rev. 2008, 60, 328-338.
    Lu, J.; Wang, X.-J.; Yang, X.; Ching, C.-B. Cryst. Growth Des. 2007, 7, 1590-1598.
    Cheon, Y.-H.; Kim K.-J.; Kim, S.-H. Chem. Eng. Sci. 2005, 60, 4791-4802.
    Musumeci, D.; Hunter, C. A.; McCabe, J. F. Cryst. Growth Des. 2010, 10, 1661-1664.
    Therlfall, T. Org. Process Res. Dev. 2000, 4, 384-390.
    (a) Grzesiak, A. L.; Matzger, A. J. J. Pharm. Sci. 2007, 96, 2978-2986; (b) Lang, M.; Grzesiak, l.; Matzger, A. J. J. Am. Chem. Soc. 2002, 124, 14834-14835; (c) Lee, A. Y.; Ulman, A.; Myerson, A. S. Langmuir 2002, 18, 5886-5898; (d) Sudha, C.; Nandhini, R.; Srinivasan, K. Cryst. Growth Des. 2014, 14, 705-715.
    Mann, S. Nature 1988, 332, 119-124.
    Zaremba, C. M.; Belcher, A. M.; Fritz, M.; Li, Y.; Mann, S. Hansma, P. K.; Morse, D. E.; Speck, J. S.; Stucky, G. D. Chem. Mater. 1996, 8, 679-690.
    Ostwald, W. Z. Phys. Chem. 1897, 22, 289–330.
    (a) Yu, Z. Q.; Chow, P. S.; Tan, R. B. H. Org. Proc. Res. Dev. 2006, 10, 717-722; (b) Kitamura, M.; Sugimoto, M. J. Cryst. Growth 2007, 257, 177-184.
    Lee, T.; Chang, G. D. Cryst. Growth Des. 2009, 9, 3551-3561.
    Noorduin, W. L.; Grinthal, A.; Mahadevan, L.; Aizenberg, J. Science 2013, 340, 832-837.
    Fundueanu, G.; Esposito, E.; Mihai, D.; Carpov, A.; Desbrieres, J.; Rinaudo, M.; Nastruzzi, C. Int. J. Pharmaceut. 1998, 170, 11-21.
    Lee, T.; Lin, H. Y.; Lee, H. L. Org. Process Res. Dev. 2013, 17, 1168-1179.
    Naumov, D. Y.; Vasilchenkom, M. A.; Howard, J. A. K. Acta Cryst. 1998, C54, 653-655.
    Haisa, M.; Kashino, S.; Maeda, H. Acta Cryst. 1974, B30, 2510-2512.
    Perrin, M.-A.; Neumann, M. A.; Elmaleh, H.; Zaske, L. Chem. Commun. 2009, 3181-3183.
    Martino, P. D.; Conflant, P.; Drache, M.; Huvenne, J.-P.; Guyot-Hermann, A.-M. J. Thermal Anal. 1997, 48, 447-458.
    André, V.; da Piedade, M. F. M.; Duarte, M. T. CrystEngComm, 2012, 13, 5005-5014.
    Delmas, T.; Shah, U. V.; Roberts, M. M.; Williams, D. R.; Heng, J. Y. Y. Powder Technol. 2013, 236, 24-29.
    Karki, S.; Friščić, T.; Fábián, L.; Laity, P. R.; Day, G. M.; Jones, W. Adv. Mater. 2009, 21, 3905-3909.
    Vogel, S. H. U.S. Patent 4 439 453, 1984.
    Railkar, A. M.; Schwartz, J. B. Drug Dev. Ind. Pharm. 2001, 27, 337-343.
    Ettabia, A.; Joiris, E.; Guyot-Hermann, A.-M.; Guyot, J.-C. Pharm. Ind. 1997, 59, 625-631.
    Ålander, E. M.; Uusi-Penttilä, M. S.; Rasmuson, A. C. Ind. Eng. Chem. Res. 2004, 43, 629-637.
    Nichols, G.; Frampton, C. S. J. Pharm. Sci. 1998, 87, 684-693.
    Thomas, L. H.; Wales, C.; Zhao, L.; Wilson, C. C. Cryst. Growth Des. 2011, 11, 1450-1452.
    Peterson, M. L.; Morissette, S. L.; McNulty, C.; Goldsweig, A.; Shaw, P.; LeQuesne, M.; Monagle, J.; Encina, N.; Marchionna, J.; Johnson, A.; Gonzalez-Zugasti, J.; Lemmo, A. V.; Eills, S. J.; Cima, M. J.; Almarsson, Ö. J. Am. Chem. Soc. 2002, 124, 10958-10959.
    Sacchetti, M. J. Therm. Anal. Cal. 2001, 63, 345-350.
    Gans, E. H.; Higuchi, T. J. Am. Pharm. Assoc. 1957, 46, 458-466.
    Lee, T.; Wang, Y. W. Drug Dev. Ind. Pharm. 2009, 35, 555-567.
    Ellis, F. In Paracetamol – A curriculum resource; Osborne, C. Pack, M. Eds.; Royal Society of Chemistry, 2002, 8-12.
    Lee, T.; Kuo, C. S.; Chen, Y. H. Pharm. Technol. 2006, 30, 72-92.
    Donbrow, M.; Jan, Z. A. J. Pharm. Pharmacol. 1965, 17, 129S-137S.
    Poochikian, G. K.; Cradock, J. C. J. Pharm. Sci. 1979, 68, 728-732.
    Gans, E. H.; Higuchi, T. J. Am. Pharm. Assoc. 1957, 46, 458-466.
    Zimmermann, B.; Baranović, G. J. Pharm. Biomed. Anal. 2011, 54, 295-302.
    Szelagiewicz, M.; Marcolli, C.; Cianferani, S.; Hard, A. P.; Vit, A.; Burkhard, A.; von Raumer, M.; Hofmeier, U. Ch.; Zilian, A.; Francotte, E.; Schenker, R. J. Therm. Anal. Calorim. 1999, 57, 23-43.
    Giron, D. Thermochim. Acta 1995, 248, 1-59.
    Burger, B. Acta Pharm. Technol. 1982, 28, 1-20
    Al-Zoubi, N.; Koundorellis, J. E.; Malamataris, S. J. Pharm. Bimed. Anal. 2002, 29, 459-467.
    Rasenack, N.; Müller, B. W. Int. J. Pharm. 2002, 244, 45-57.
    Lee, T.; Kuo, C. S. Pharm. Tech. 2006, 30 (3), 110-120.
    Lee, T.; Wang, Y. W. Drug Dev. Ind. Pharm. 2009, 35, 555-567.
    Martino, P. D.; Conflant, P.; Drache, M.; Huvenne, J.-P.; Guyot-Hermann, A.-M. J. Thermal Anal. 1997, 48, 447-458.
    Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Cryst. Growth Des. 2012, 12, 5897-5907.

    Chapter 4
    (a) Lee, T.; Wang, P. Y. Cryst. Growth Des. 2010, 10, 1419-1434. (b) Desiraju, G. R. CrystEngComm 2003, 5, 466-467. (c) Aakeröy, C. B.; Salmon, D. J. CrystEngComm 2005, 7, 439-448.
    (a) Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Int. J. Pharm. 2011, 419, 1-11. (b) Karki, S.; Friščić, T.; Fábián, L.; Laity, P. R.; Day, G. M.; Jones, W. Adv. Mater. 2009, 21, 3905-3909. (c) Schultheiss, N.; Newman, A. Cryst. Growth Des. 2009, 9, 2950-2967.
    (a) Zhang, J.; Geng, H.; Virk, T. S.; Zhao, Y.; Tan, J.; Di, C.-A.; Xu, W.; Singh, K.; Hu, W.; Shuai, Z.; Liu, Y.; Zhu, D. Adv. Mater. 2012, 24, 2603-2607. (b) Lei, Y. L.; Liao, L. S.; Lee, S. T. J. Am. Chem. Soc. 2013, 135, 3744-3747.
    (a) Morimoto, M.; Irie, M. J. Am. Chem. Soc. 2010, 132, 14172-14178. (b) Karunatilaka, C.; Bučar, D.-K.; Ditzler, L. R.; Friščić, T.; Swenson, D. C.; MacGillivray, L. R.; Tivanski, A. V. Angew. Chem. Int. Ed. 2011, 50, 8642-8646.
    Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.; Hu, J.-C.; Chen, L.-T. Chem. Eng. J. 2013, 225, 809-817.
    Chen, S.; Xi, H.; Henry, R. F.; Marsden, I.; Zhang, G. G. Z. CrystEngComm 2010, 12, 1485-1493.
    Bethune, S. J.; Schultheiss, N.; Henck, J.-O. Cryst. Growth Des. 2011, 11, 2817-2823.
    (a) Almarsson, Ö.; Peterson, M. L.; Zaworotko, M. Pharm. Pat. Analyst 2012, 1, 313-327. (b) Khan, M.; Enkelmann, V.; Brunklaus, G. J. Am. Chem. Soc. 2010, 132, 5254-5263. (c) Jones, W.; Motherwell, W. D. S.; Trask, A. V. MRS Bull. 2006, 31, 875-879.
    Babu, N. J.; Nangia. A. Cryst. Growth Des. 2011, 11, 2662-2679.
    (a) Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Cryst. Growth Des. 2012, 12, 5897-5907. (b) Billot, P.; Hosek, P.; Perrin, M. Org. Proc. Res. Dev. 2013, 17, 505-511. (c) Urbanus, J.; Roelands, C. P. M.; Verdoes, D.; Jansens, P. J.; ter Horst, J. H. Cryst. Growth Des. 2010, 10, 1171-1179. (d) Hsi, K. H.-Y.; Chadwick, K.; Fried, A.; Kenny, M.; Myerson, A. S. CrystEngComm 2012, 14, 2386-2388.
    Najar, A. A.; Azim, Y. Pharmaceutical Co-crystals: A New Paradigm of Crystal Engineering. J. Indian Inst. Sci. 2014, 94 (1), 45-68.
    Sekhon, B. S. DARU J. Pharm. Sci. 2012, 20, 45.
    Barei, F.; Le Pen, C.; Simoens, S. GaBI Journal 2013, 2, 13-9.
    Kim, S.; Li, Z.; Tseng, Y.-C.; Nar, H.; Spinelli, E.; Varsolona, R.; Reeves, J. T. ; Lee, H.; Song, J. J.; Smoliga, J.; Yee, N.; Senanayake, C. Org. Proc. Res. Dev. 2013, 17, 540-548.
    Butterhof, C.; Milius, W.; Breu, J. CrystEngComm 2012, 14, 3945-3950.
    Braga, D.; Grepioni, F.; Maini, L.; Mazzeo, P. P.; Rubini, K. Thermochim. Acta 2010, 507-508, 1-8.
    (a) Takata, N.; Shiraki, K.; Takano, R.; Hayashi, Y.; Terada, K. Cryst. Growth Des. 2008, 8, 3032-3037. (b) Croker, D. M.; Rasmuson, Å. C. Org. Proc. Res. Dev. 2014, 18, 941-946.
    (a) Bag, P. P.; Patni, M.; Reddy, C. M. CrystEngComm 2011, 13, 5650-5652. (b) Yu, Z. Q.; Chow, P. S.; Tan, R. B. H. Cryst. Growth Des. 2010, 10, 2382-2387.
    (a) Padrela, L.; Rodrigues, M. A.; Velaga, S. P.; Fernandes, A. C.; Matos, H. A.; de Azevedo, E. G. J. Supercrit. Fluids 2010, 53, 156-164. (b) Herrmann, M.; Förter-Barth, U.; Kröber, H.; Kempa, P. B.; del Mar Juez-Lorenzp, M.; Doyle, S. Part. Part. Syst. Charact. 2009, 26, 151-156.
    Alhalaweh, A.; Velaga, S. P. Cryst. Growth Des. 2010, 10, 3302-3305.
    Berry, D. J.; Seaton, C. C.; Clegg, W.; Harrington, W.; Coles, S. J.; Horton, P. N.; Hursthouse, M. B.; Storey, R.; Jones, W.; Friščić, T.; Blagden, N. Cryst. Growth Des. 2008, 8, 1697-1712.
    (a) Mukherjee, A.; Tothadi, S.; Chakraborty, S.; Ganguly, S.; Desiraju, G. R. CrystEngComm 2013, 15, 4640-4654. (b) Brittain, H. G. Cryst. Growth Des. 2010, 10, 1990-2003.
    Lee, K.-S.; Kim, K.-J.; Ulrich, J. Cryst. Growth Des. 2014, 14, 2893-2899.
    Lin, H.-L.; Hsu, P.-C.; Lin, S.-Y. Asian J. Pharm. Sci. 2013, 8, 19-27.
    (a) Lemmerer, A.; Bernstein, J.; Kahlenberg, V. CrystEngComm 2010, 12, 2856-2864. (b) Lemmerer, A.; Bernstein, J.; Kahlenberg, V. CrystEngComm 2011, 13, 55-59. (c) Lemmerer, A.; Bernstein, J.; Kahlenberg, V. CrystEngComm 2011, 13, 5692-5708. (d) Lemmerer, A. CrystEngComm 2012, 14, 2465-2478.
    Lee, T.; Kuo, C. S.; Chen, Y. H. Pharm. Tech. 2006, 30 (10), 72-92.
    (a) Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Pharm. Tech. 2009, 33 (5), 62-72. (b) Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Pharm. Tech. 2009, 33 (6), 54-61.
    Lee, T.; Wang, P. Y. Cryst. Growth Des. 2010, 10 (3), 1419-1434.
    Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Cryst. Growth Des. 2012, 12 (12), 5897-5907.
    Granberg, R. A.; Rasmuson, Ǻ. C. J. Chem. Eng. Data 1999, 44, 1391-1395
    Childs, S. L.; Rodríguez-Hornedo, N.; Reddy, L. S.; Jayasankar, A.; Maheshwari, C.; McCausland, L.; Shipplett, R.; Stahly, B. C. CrystEngComm 2008, 10 (7), 856-864.
    Desiraju, G. R. Supramolecular Synthonsin Crystal Engineering–A New Organic Synthesis. Angew. Chem. Int. Ed. 1995, 34 (21), 2311-2327.
    Vishweshwar. P.; McMahon, J. A.; Bis, J. A.; Zaworotko, M. J. Pharmaceutical Co-crystals. J. Pharm. Sci. 2006, 95 (3), 499-516.
    (a) Childs, S. L.; Rodríguez-Hornedo, N.; Reddy, L. S.; Jayasankar, A.; Maheshwari, C.; McCausland, L.; Shipplett, R.; Stahly, B. C. CrystEngComm 2008, 10, 856-864. (b) Vishweshwar, P.; McMahon, J. A.; Oliveira, M.; Peterson, M. L.; Zaworotko, M. J. J. Am. Chem. Soc. 2005, 127, 16802-16803. (c) Butterhof, C.; Bärwinkel, K.; Senker, J.; Breu, J. CrystEngComm 2012, 14, 6744-6749.
    Shan, N.; Toda, F.; Jones, W. Chem. Commun. 2002, 2372-2373.
    Li, Z.; Yang, B.-S.; Jiang, M.; Eriksson, M.; Spinelli, E.; Yee, N.; Senanayake, C. Org. Proc. Res. Dev. 2009, 13, 1307-1314.
    (a) ter Horst, J. H.; Deij, M. A.; Cains, P. W. Cryst. Growth Des. 2009, 9, 1531-1537. (b) Boyd, S.; Back, K.; Chadwick, K.; Davey, R. J.; Seaton, C. C. J. Pharm. Sci. 2010, 99, 3779-3786.
    Lee, H. L.; Lin, H. Y.; Lee, T. Org. Proc. Res. Dev. 2014, 18, 539-545.
    Ainouz, A.; Authelin, J.-R.; Billot, P.; Lieberman, H. Int. J. Pharm. 2009, 374, 82-89.
    Chiarella, R. A.; Davey, R. J.; Peterson, M. L. Making Co-crystals-The Utility of Ternary Phase Diagrams. Cryst. Growth Des. 2007, 7 (7), 1223-1226.
    (a) Bond, A. D.; Boese, R.; Desiraju, G. R. Angew. Chem. Int. Ed. 2007, 46, 618-622. (b) Eddleston, M. D.; Thakuria, R.; Aldous, B. J.; Jones, W. J. Pharm. Sci. 2014, 103, 2859-2864.
    Cheney, M. L.; Weyna, D. R.; Shan, N.; Hanna, M.; Wojtas, L.; Zaworotko, M. J. J. Pharm. Sci. 2011, 100, 2172-2181.
    Lee, J.; Hong, M.; Jung, Y.; Cho, E. J.; Rhee, H. Tetrahedron 2012, 68, 2045-2051.
    Leung, D. H.; Lohani, S.; Ball, R. G.; Canfield, N.; Wang, Y.; Rhodes, T.; Bak, A. Cryst. Growth Des. 2012, 12, 1254-1262.
    (a) Bučar, D.-K.; Lancaster, R. W.; Bernstein, J. Angew. Chem. Int. Ed. 2015, 54, 6972-6993. (b) Aitipamula, S.; Chow, P. S.; Tan, R. B. H. CrystEngComm 2014, 16, 3451-3465.
    Yeh, K. L.; Lee, T. Intensified Crystallization Processes for 1:1 Drug-Drug Co-crystals of Sulfathiazole-Theophylline, and Sulfathiazole-Sulfanilamide. Cryst. Growth Des. [Online early access]. DOI: 10.1021/acs.cgd.7b01197.

    Chapter 5
    Lipinski, C. A. Poor Aqueous Solubility – An industry wide problem in drug discovery. Am. Pharm. Rev. 2002, 5, 82-85.
    Nie, H.; Xu, W.; Ren, J.; Taylor, L. S.; Marsac, P. J.; John, C. T.; Byrn, S. R. Impact of metallic stearates on disproportionation of hydrochloride salts of weak bases in solid-state formulations. Mol. Pharm. 2016, 13, 3541-3552.
    (a) Qiao, N.; Wang, K.; Schlindwein, W.; Davies, A.; Li, M. In situ monitoring of carbamazepine-nicotinamide cocrystal intrinsic dissolution behaviour. Eur. J. Pharm. Biopharm. 2013, 83, 415-426. (b) Karashima, M.; Kimoto, K.; Yamamoto, K.; Kojima, T.; Ikeda, Y. A novel solubilization technique for poorly soluble drugs through the integration of nanocrystal and cocrystal technologies. Eur. J. Pharm. Biopharm. 2016, 107, 142-150.
    Serajuddin, A. T. M. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999, 88, 1058-1066.
    Berge, S. M.; Bighley, L. D.; Monkhouse, D. C. Pharmaceutical salts. J. Pharm. Sci. 1977, 66, 1-19.
    Pudipeddi, M.; Serajuddin, A. T. M.; Grant, D. J. W.; Stahl, P. H. Solubility and dissolution of weak acids, bases, and salts. In Handbook of Pharmaceutical Salts, Properties, Selection and Use, 1st ed.; Stahl, P. H.; Wermuth, C. G.; Eds.; Weinheim: Wiley-VCH, 2002; 19-40.
    Rajput, L. Stable crystalline salts of haloperidol: A highly water-soluble mesylate salt. Cryst. Growth Des. 2014, 14, 5196-5205.
    Stephenson, G. A.; Aburub, A.; Woods, T. A. Physical stability salts of weak bases in the solid-state. J. Pharm. Sci. 2011, 100, 1607-1617.
    (a) Challener, C. A. Scientific advances in cocrystals are offset by regulatory uncertainty. Pharm. Tech. 2014, 38 (May 02) (http://www.pharmtech.com/scientific-advances-cocrystals-are-offset-regulatory-uncertainty, last assessed on February 21, 2017). (b) FDA: Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry (April 2013) (https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm, last assessed on February 21, 2017). (c) FDA: Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry (August 2016) (https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm, last assessed on February 21, 2017).
    Serajuddin, A. T. M. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 2007, 59, 603-616.
    (a) Bastin, R. J.; Bowker, M. J.; Slater, B. J. Salt selection and optimization procedures for pharmaceutical new chemical entities. Org. Proc. Res. Dev. 2000, 4, 427-435. (b) Lee, T.; Wang, Y. W. Initial salt screening procedures for manufacturing ibuprofen. Drug Dev. Ind. Pharm. 2009, 35, 555-567.
    (a) Morris, K. R.; Fakes, M. G.; Thakur, A. B.; Newman, A. W.; Singh, A. K.; Venit, J. J.; Spagnuolo, C. J.; Serajuddin, A. T. M. An integrated approach to the selection of optimal salt form for a new drug candidate. Int. J. Pharm. 1994, 105, 209-217. (b) Jones, H. P.; Davey, R. J. Crystallization of a salt of a weak organic acid and base: Solubility relations, supersaturation control and polymorphic behavior. J. Phys. Chem. B 2005, 109, 5273-5278. (c) Li, S.; Wong, S.; Sethia, S.; Almoazen, H.; Joshi, Y. M.; Serajuddin, A. T. M. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm. Res. 2005, 22, 628-635.
    Wermuth, C. G.; Stahl, P.H. Selected procedures for the preparation of pharmaceutically acceptable salts. In Handbook of Pharmaceutical Salts, Properties, Selection and Use, 1st ed.; Stahl, P. H.; Wermuth, C. G.; Eds.; Weinheim: Wiley-VCH, 2002; 249-264.
    Lakshman, J. P.; Cao, Y.; Kowalski, J.; Serajuddin, A. T. M. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm. 2008, 5, 994-1002.
    (a) Melkebeke, B. V.; Vervaet, C.; Remon, J. P. Validation of a continuous granulation process using a twin screw extruder. Int. J. Pharm. 2008, 356, 224-230. (b) Batra, A.; Desai, D.; Serajuddin, A. T. M. Investigating the use of polymeric binders in twin screw melt granulation process for improving compactibility of drugs. J. Pharm. Sci. 2017, 106, 140-150.
    Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A. W. 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics. Mol. Pharm. 2015, 12, 4077-4084.
    Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S. L. Synthesis by extrusion: Continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 2015, 6, 1645-1649.
    (a) Medina, C.; Daurio, D.; Nagapudi, K.; Alvarez-Nunez, F. Manufacture of pharmaceutical co-crystals using twin screw extrusion: A solvent-less and scalable process. J. Pharm. Sci. 2010, 99, 1693-1696. (b) Moradiya, H. G.; Islam, M. T.; Halsey, S.; Maniruzzaman, M.; Chowdhry, B. Z.; Snowden, M. J.; Douroumis, D. Continuous cocrystallization of carbamazebine and trans-cinnamic acid via melt extrusion processing. CrystEngComm 2014, 16, 3573-3583.
    Daurio, D.; Medina, C.; Saw, R.; Nagapudi, K.; Alvarez-Núñez, F. Application of twin screw extrusion in the manufacture of cocrystal, Part I: Four case studies. Pharmaceuticals 2011, 3, 582-600.
    Moradiya, H.; Islam, M. T.; Woollam, G. R.; Slipper, I. J.; Halsey, S.; Snowden, M. J.; Douroumis, D. Continuous cocrystallization for dissolution rate optimization of a poorly water-soluble drug. Cryst. Growth Des. 2014, 14, 189-198.
    Li, S.; Doyle, P.; Metz, S.; Royce, A. E.; Serajuddin, A. T. M. Effect of chloride ion on dissolution of different salt forms of haloperidol, a model basic drug. J. Pharm. Sci. 2005, 94, 2224-2231.
    Singh, S.; Parikh, T.; Sandhu, H. K.; Shah, N. H.; Malick, A. W.; Singhal, D.; Serajuddin, A. T. M. Supersolubilization and amorphization of a model basic drug, haloperidol, by interacting with weak acids. Pharm. Res. 2013, 30, 156-173.
    Aitipamula, S.; Wong, A. B. H.; Chow, P. S.; Tan, R. B. H. Pharmaceutical salts of haloperidol with some carboxylic acids and artificial sweeteners: Hydrate formation, polymorphism and physicochemical properties. Cryst. Growth Des. 2014, 14, 2542-2556.
    Pudipeddi, M.; Serajuddin, A. T. M.; Grant, D. J. W.; Stahl, P. H. Salt-selection strategies. In Handbook of Pharmaceutical Salts, Properties, Selection and Use, 1st ed.; Stahl, P. H.; Wermuth, C. G.; Eds.; Weinheim: Wiley-VCH, 2002; 135-160.
    Avdeef, A.; Fuguet, E.; Llinàs, A.; Ràfols, C.; Bosch, E.; Völgyi, G.; Verbić, T.; Boldyreva, E.; Takács-Novák, K. Equilibrium solubility measurement of ionizable drugs - consensus recommendations for improving data quality. ADMET and DMPK 2016, 4, 117-178.
    Seefeldt, K.; Miller, J.; Alvarez-Núñez, F.; Rodriguez-Hornedo, N. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies. J. Pharm. Sci. 2007, 96, 1147-1158.
    (a) Weyna, D. R.; Shattock, T.; Vishweshwar, P.; Zaworotko, M. J. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: Mechanochemistry vs slow evaporation from solution. Cryst. Growth Des. 2009, 9, 1106-1123. (b) Delori, A.; Friščić, T.; Jones, W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm 2012, 14, 2350-2362.
    Shimono, K.; Kadota, K.; Tozuka, Y.; Shimosake, A.; Shirakawa, Y.; Hidaka, J. Kinetics of co-crystal formation with caffeine and citric acid via liquid-assisted grinding analyzed using the distinct element method. Eur. J. Pharm. Sci. 2015, 76, 217-224.
    (a) Trask, A. V.; Haynes, D. A.; Motherwell, W. D. S.; Jones, W. Screening for crystalline salts via mechanochemistry. Chem. Commun. 2006, 51-53. (b) Thakuria, R. Nangia, A. Highly soluble olanzapinium maleate crystalline salts. CrystEngComm 2011, 13, 1759-1764.
    Lee, H. L.; Lee, T. Direct co-crystal assembly from synthesis to co-crystallization. CrystEngComm 2015, 17, 9002-9006.
    Lee, T.; Tsai, M. H.; Lee, H. L. Riboflavin chelated luminescent metal-organic framework: Identified by liquid-assisted grinding for large-molecule sensing via chromaticity coordinates. Cryst. Growth Des. 2012, 12, 3181-3190.
    Kano, J.; Yamashita, H.; Saito, F. Effect of heat-assisted grinding of a calcium hydroxide-gibbsite mixture on formation of hydrated calcium aluminate and its hydration behavior. Powder Tech. 1998, 98, 279-280.
    Eitzlmayr, A.; Koscher, G.; Reynolds, G.; Huang, Z.; Booth, J.; Shering, P.; Khinast, J. Mechanistic modeling of modular co-rotating twin screw extruders. Int. J. Pharm. 2014, 474, 157-176.
    (a) Dhumal, R. S.; Kelly, A. L.; York, P.; Coates, P. D.; Paradkar, A. C. Cocrystallization and simultaneous agglomeration using melt extrusion. Pharm. Res. 2010, 27, 2725-2733. (b) Kelly, A. L.; Gough, T.; Dhumal, R. S.; Halsey, S. A.; Paradkar, A. Monitoring ibuprofen-nicotinamide cocrystal formation during solvent free continuous cocrystallization (SFCC) using near infrared spectroscopy as a PAT tool. Int. J. Pharm. 2012, 426, 15-20.
    (a) da Silva, C. C.; Guimarães, F. F.; Rubeiro, L.; Martins, F. T. Salt of cocrystal of salt? Probing the nature of multicomponent crystal forms with infrared spectroscopy. Spectrochim. Acta A 2016, 167, 89-95. (b) Brittain, H. G. Vibrational spectroscopic studies of cocrystals and salts. 3. Cocrystal products formed by benzenecarboxylic acids and their sodium salts. Cryst. Growth Des. 2010, 10, 1990-2003.
    Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; New York: Academic Press, Inc., 1990; 313-318, 342.
    Nie, H.; Su, Y.; Zhang, M.; Song, Y.; Leone, A.; Taylor, L. S.; Marsac, P. J.; Li, T.; Byrn, S. R. Solid-state spectroscopic investigation of molecular interactions between clofazimine and hypromellose phthalate in amorphous solid dispersions. Mol. Pharm. 2016, 13, 3964-3975.
    Pretsch, E.; Bühlmann, P.; Affolter, C. Structure Determination of Organic Compounds: Table of Spectral Data, 3rd ed.; Berlin: Springer, 2009; 260-261, 290-292.
    Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd., 2006.
    Thompson, W. E.; Warren, R. J.; Eisdorfer, I. B.; Zarembo, J. E. Identification of primarily, secondary, and tertiary pharmaceutical amines by the infrared spectra of their salts. J. Pharm. Sci. 1965, 54, 1819-1821.
    Lee, T.; Wang, P. Y. Screening, manufacturing, photoluminescence, and molecular recognition of co-crystals: Cytosine with dicarboxylic acids. Cryst. Growth Des. 2010, 10, 1419-1434.
    Zhu, H.; Yuen, C.; Grant, D. J. W.; Influence of water activity in organic solvent + water mixtures on the nature of the crystallizing drug phase. 1. Theophylline. Int. J. Pharm. 1996, 135, 151-160.
    McNamara, D. P.; Childs, S. L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M. S.; Mannion, R.; O’Donnell, E.; Park, A. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm. Res. 2006, 23, 1888-1897.
    Daurio, D.; Nagapudi, K.; Li, L.; Quan, P.; Alvarez-Nunez, F. Application of twin screw extrusion to the manufacture of cocrystals: Scale-up of AMG 517-sorbic acid cocrystal production. Faraday Discuss. 2014, 170, 235-249.
    Berry, D. J.; Seaton, C. C.; Clegg, W.; Harrington, R. W.; Coles, S. J.; Horton, P. N.; Hursthouse, M. B.; Storey, R.; Jones, W.; Friščić, T.; Blagden, N. Applying hot-stage microscopy to co-crystal screening: A study of nicotinamide with seven active pharmaceutical ingredients. Cryst. Growth Des. 2008, 8, 1697-1712.
    Lu, E.; Rodríguez-Hornedo, N.; Suryanarayanan, R. A rapid thermal method for cocrystal screening. CrystEngComm 2008, 10, 665-668.

    Chapter 6
    Singh, S.; Parikh, T.; Sandhu, H. K.; Shah, N. H.; Malick, A. W.; Singhal, D.; Serajuddin, A. T. M. Supersolubilization and Amorphization of a Model Basic Drug, Haloperidol, by Interaction with Weak Acids. Pharm. Res. 2013, 30 (6), 1561-1573.
    Parikh, T.; Sandhu, H. K.; Talele, T. T.; Serajuddin, A. T. M. Characterization of Solid Dispersion of Itraconazole Prepared by Solubilization in Concentrated Aqueous Solutions of Weak Organic Acids and Drying. Pharm. Res. 2016, 33 (6), 1456-1471
    Mukaida, M.; Sugano, K.; Terada, K. Stability Order of Caffeine Co-crystals Determined by Co-crystal Former Exchange Reaction and Its Application for the Validation of in Silico Models. Chem. Pharm. Bull. 2015, 63 (1), 18-24.

    QR CODE
    :::