跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳建宏
Chien-Hong Chen
論文名稱: 高效能固態照明新式電驅動模式之研究
Study of Novel Driving Modes with High Performance for LEDs
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 110
中文關鍵詞: 電控固態照明驅動模式
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將LED之驅動結合負回饋控制,並提出兩種LED之驅動模式來改善該光源受熱效應之影響。其一為解決點亮LED時亮度衰退的問題,以電控驅動使光功率能夠維持,其光束維持率高達0.98以上;其二為改善熱效應致LED運作於低效率差的狀態,使用電控驅動穩定p-n接面溫度,其光功率增幅能高達7.5%。新式電控驅動模式能使LED的缺點能夠得到改善,使得原本就高的轉換效率能夠表現更佳,發光行為表現更穩定。


    In this thesis, two innovative driving modes are proposed to improve the thermal effect when turning on LEDs. The traditional driving mode will induce two shortcomings. The first one is the initial state with radiant power drop dramatically, and make the light maintenance is above 0.98. The second one is driving with heat accumulating state which leads to low efficiency, and the enhancement of optical power can up to 7.5%. The innovative driving mode can conquer the obstacle which traditional driving modes have. With the driving mode, the efficiency of LEDs can perform better and the emitting property can be more stable.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 研究背景 1 1-2 影響LED之因素 3 1-3 LED現有之驅動方式 5 1-4 研究動機 7 第二章 LED驅動原理 9 2-1 LED發光原理 9 2-2 LED發光之影響因素 10 第三章 熱電關係量測 13 3-1 熱電關係量測系統 15 3-2 順向電壓與接面溫度 19 3-3 光功率模型之建立 22 3-4 光功率之等值曲線 24 第四章 等光功率驅動模式 26 4-1 驅動模式原理 26 4-1-1 控制原理 27 4-1-2 等光功率驅動原理 28 4-2 特性整合量測系統 31 4-2-1 實驗架構 31 4-2-2 實驗條件與流程 36 4-3 實驗結果與分析 37 4-3-1 實驗數據 37 4-3-2 光束維持率 42 第五章 高效率驅動模式 45 5-1 可調變控制原理 45 5-1-1 接面溫度控制原理 47 5-1-2 高效率驅動原理 48 5-2 接面溫度與驅動電流之變化關係 51 5-2-1 接面溫度隨時間變化關係 51 5-2-2 電流與溫度變化關係 54 5-2-3 驅動電流與接面溫度 57 5-2-4 熱時變參數與文獻比較 59 5-3 實驗條件與流程 62 5-4 實驗結果與分析 64 5-4-1 實驗數據 64 5-4-2 收斂範圍與分析 68 5-4-3 光譜參數之函數擬合法 70 5-4-4 參數關係分析及探討 72 5-5 其他類型LED 74 5-5-1 綠光LED 74 5-5-2 紅光LED 75 5-5-3 琥珀LED 76 5-5-4 白光LED:色溫6500K 77 5-5-5 白光LED:色溫3000K 78 第六章 結論 80 參考文獻 82 中英文名詞對照表 89

    [1] M. Josephson, Edison: a biography (McGraw-Hill, New York, 1959).
    [2] J. Kaufman, IES Lighting Handbook (Illuminating Engineering Society of North America, New York, 1981).
    [3] R. Kane, and H. Sell, Revolution in lamps: a chronicle of 50 years of progress (The Fairmont Press, 2001).
    [4] 林憲德、趙又嬋,都是愛迪生惹的禍:光害,新自然主義出版社,中華民國九十八年。
    [5] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, New York, 2002).
    [6] J. C. B. D. A. Steigerwald, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L.Rudaz, “Illumination with solid state lighting technology,” IEEE J. Quantum Electron. 8, 310-312 (2002).
    [7] E. F. Schubert, and J. K. Kim, “Solid-state light sources becoming smart,” Science 308, 1274-1278 (2005).
    [8] H. J. Round, “A note on carborundum,” Electrical world 49, 309 (1907).
    [9] T. Pearsall, B. Miller, R. Capik, and K. Bachmann, “Efficient lattice‐matched double‐heterostructure LED’s at 1.1 μm from Ga x In 1-x As y P 1-y,” Appl. Phys. Lett. 28, 499-501 (1976).
    [10] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986).
    [11] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett. 64, 1687 (1994).
    [12] S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281, 956-961 (1998).
    [13] J. Redwing, and M. A. Tischler, “High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same,” EUROPE Patent No. WO1996024167A1, (1999).
    [14] F. Hide, P. Kozodoy, S. P. DenBaars, and A. J. Heeger, “White light from InGaN/conjugated polymer hybrid light-emitting diodes,” Appl. Phys. Lett. 70, 2664-2666 (1997).
    [15] L. Vriens, G. Acket, and C. Ronda, “UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light,” US Patent No. US5813753A, (1998).
    [16] P. Waltereit, O. Brandt, A. Trampert, H. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406, 865-868 (2000).
    [17] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol 3, 160-175 (2007).
    [18] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A 64, 417-418 (1997).
    [19] M. Arik, and S. Weaver, “Chip-scale thermal management of high-brightness LED packages,” Proc. SPIE Third Int. Conf. on Solid State Lighting 49, 214-223 (2004).
    [20] S. Chhajed, Y.-L. L. Y. Xi, T. Gessmann, and E. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” Appl. Phys. Lett. 97, 054506-054508 (2005).
    [21] C.-J. Weng, “Advanced thermal enhancement and management of LED packages,” Int. Commun. Heat Mass Transfer 36, 245-248 (2009).
    [22] M. Nishikawa, Y. Ishizuka, H. Matsuo, and K. Shigematsu, “An LED drive circuit with constant- output-current control and constant-luminance control,” Proc. INTELEC, 1-6 (2006).
    [23] T. Shimizu, K. Wada, and N. Nakamura, “Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system,” IEEE Trans. Power Electron. 21, 1264-1272 (2006).
    [24] B. Wang, X. Ruan, K. Yao, and M. Xu, “A method of reducing the peak-to-average ratio of LED current for electrolytic capacitor-less ac-dc drivers,” IEEE Trans. Power Electron. 25, 592-601 (2010).
    [25] L. Svilainis, “LED brightness control for video display application,” Displays 29, 243-249 (2008).
    [26] Y.-K. Min, B. Clauberg, and B. J. E. Hontelé, “LED driver circuit with PWM output ” U.S. Patent No. US 6586890 B2, (2003).
    [27] F. P. Wenzl, C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, G. Langer, P. Fulmek, and J. Nicolics4, “The impact of the non-linearity of the radiant flux on the thermal load of the color conversion elements in phosphor converted LEDs under different current driving schemes,” J. Opt. Soc. Am. A 21, 439-449 (2013).
    [28] 周虹宇,發光二極體發光光譜特性之模型建立與維持穩定,國立中央大學光電科學與工程學系博士論文,中華民國一百年。
    [29] 紀詔元,高功率LED光電熱色特性整合模型之研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
    [30] 唐健碩,高功率LED光電熱色特性整合模型之研究,國立中央大學光電科學與工程碩士論文,中華民國一百零二年。
    [31] D. A. Neamen, and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill New York, 2003).
    [32] G. W. Neudeck, and R. F. Pierret, he PN Junction Diode: Volume II (Addison-Wesley, 1989).
    [33] D. A. Neamen, An Introduction to Semiconductor Devices (Cambridge University Press, 2005).
    [34] B. E. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure an Applied Optics, 2007).
    [35] J. Brody, D. Weiss, and P. Young, “Observing the Maxwell–Boltzmann distribution in LED emission spectra,” Am. J. Phys. 1, 7 (2010).
    [36] 鄭翰翔,白光 LED 加速老化之光輻射特性之研究,國立中央大學光電與工程學系碩士論文,中華民國一百零三年。
    [37] S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high‐power GaAlAs visible lasers,” J. Appl. Phys. 58, 1124-1128 (1985).
    [38] W. B. Bridges, “Laser oscillation in singly ionized argon in the visible spectrum,” Appl. Phys. Lett. 4, 128-130 (1964).
    [39] A. D. McNaught, and A. Wilkinson, Compendium of chemical terminology (Blackwell Science Oxford, 1997).
    [40] D. Hall, L. Goldberg, and D. Mehuys, “Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe,” Appl. Phys. Lett. 61, 384-386 (1992).
    [41] J. Cho, C. Sone, Y. Park, and E. Yoon, “Measuring the junction temperature of III‐nitride light emitting diodes using electro‐luminescence shift,” Phys. Status Solidi A 205, 1869-1873 (2005).
    [42] Y. Gu, and N. Narendran, “A noncontact method for determining junction temperature of phosphor-converted white LEDs,” in Proc. SPIE Third Int. Conf. on Solid State Lighting 48, 107-114 (2004).
    [43] Y. Xi, and E. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163-2165 (2004).
    [44] E. S. Yang, Fundamental of semiconductor devices (McGraw–Hill, New York, 1978).
    [45] Cree Inc, XLamp XP-E LED Data Sheet, http://www.cree.com/~/media/Files/Cree/ LED%20Components%20and%20Modules/XLamp/Data%20and%20Binning/XLampXPE.pdf.
    [46] E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2005).
    [47] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory (Courier Corporation, 2013).
    [48] I.J.Nagrath, and M.Gopal, Control System Engineering Second (Wiley, 1984).
    [49] J. Maxwell, “On Governors,” Proc. R. Soc. London 16, 270-283 (1868).
    [50] E. F. A. Routh, Stability of motion (Taylor & Francis, 1975).
    [51] E. Routh, A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion: Particularly Steady Motion (Macmillan and co, 1877).
    [52] A. Hurwitz, Selected Papers on Mathematical Trends in Control Theory (Dover Publication, 1964).
    [53] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196 (1990).
    [54] B. Peng, V. Petrov, and K. Showalter, “Controlling Chemlcal Chaos,” J. Phys. Chem. 95, 4957-4959 (1991).
    [55] E. R. Hunt, “Stabilizing high-period orbits in a chaotic system: The diode resonator.,” Phys. Rev. Lett. 67, 1953 (1991).
    [56] W. L. Ditto, S. N. Rauseo, and M. L. Spano, “Experimental control of chaos.,” Phys. Rev. Lett. 65, 3211 (1990).
    [57] R. Roy, T. W. Murphy, Z. G. T. D. Maier, and E. R. Hunt, “Stabilizing high-period orbits in a chaotic system: The diode resonator,” Phys. Rev. Lett. 68, 1259 (1992).
    [58] Z. Gills, C. Iwata, R. Roy, I. B. Schwartz, and I. Triandaf, “Tracking unstable steady states: Extending the stability regime of a multimode laser system,” Phys. Rev. Lett. 69, 3169 (1992).
    [59] S. Hayes, C. Grebogi, and E. Ott, “Communicating with chaos.,” Phys. Rev. Lett. 70, 3031 (1993).
    [60] Y. C. Lai, and C. Grebogi, “For reviews of controlling chaos,” Phys. Rev. E 47, 2357 (1993).
    [61] A. Garfinkel, M. L. Spano, W. L. Ditto, and J. N. Weiss, “Controlling cardiac chaos.,” Science 257, 1230-1235 (1992).
    [62] Z. Galias, C. A. Murphy, M. P. Kennedy, and M. J. Ogorzalek, “Chaos and Complexity in Nonlinear Electronic Circuits,” Proc. ISCAS 96, 120 (1996).
    [63] Cree Inc, XLamp XP-G LED Data Sheet, http://www.cree.com/~/media/Files/Cree/ LED%20Components%20and%20Modules/XLamp/Data%20and%20Binning/XLampXPG.pdf.
    [64] H.-Y. Chou, and T.-H. Yang, “Dependence of emission spectra of LEDs upon junction temperature and driving current,” J. Light Visual Environ. 32, 183-186 (2008).
    [65] K. Levenberg, “A method for the solution of certain problems in least squares,” Quart. Appl. Math. 2, 164-168 (1994).

    QR CODE
    :::