| 研究生: |
吳靜芳 Ching-Fang Wu |
|---|---|
| 論文名稱: |
論巴菲特指標評估美國股市的能力: QE實施前與後的實證分析比較 A study on the ability of Buffett Indicator to assess the US stock market: empirical comparisons with the role of QE in the stock market |
| 指導教授: | 曹壽民 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 巴菲特指標 、量化寬鬆政策 、聯邦資金利率 、標準普爾500指數 、時間序列 、單根檢定 、共整合檢定 、Granger因果關係檢定 |
| 外文關鍵詞: | Buffett indicator, Quantitative easing, Federal fund rate, S&P 500, Time series, Unit root test, Cointegration test, Granger causality test |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑒於巴菲特指標在學術上甚少被探討,故本文主要探究在非常規貨幣政策—量化寬鬆 (quantitative easing, QE) 實施下,巴菲特指標對S&P500股價指數與其年報酬的衡量能力。本研究以時間序列分析,研究變數為巴菲特指標、S&P500股價指數與其年報酬、聯準會負債與聯邦資金率,使用EViews軟體進行單根檢定、共整合檢定、Granger因果檢定與迴歸分析。研究樣本期間切割為「量化寬鬆 (QE) 實施前」(1984年Q1 - 2008年Q3期間) 及「量化寬鬆 (QE) 實施後」(2008年Q4 - 2021年Q1期間),並比較實證分析結果。本文主要發現:其一,QE實施前,巴菲特指標與S&P500指數年報酬呈現長期負向相關,且巴菲特指標對S&P500指數年報酬具有預測與解釋的能力。其二,QE實施後,低利率與量化寬鬆政策為影響S&P500股價指數持續創歷史新高的重要因素,但是巴菲特指標對S&P500股價指數與其年報酬卻已皆不具任何預測與衡量的能力。最後,巴菲特指標預測S&P500股價指數年報酬的能力會受到預測時間幅度影響,而巴菲特指標適合做為長期報酬衡量指標。
Since researchers have not treated Buffett Indicator in much detail, an objective of this study is to investigate measurement capability of Buffett Indicator on both S&P500 index and its annualized return with the role of quantitative easing (QE). With Buffett Indicator, S&P500 index and its annualized return, Federal Reserve’s debt, and federal funding rate being the research variables, we used time series analysis, conducting single-root test, co-integration test, and Granger causality test. All analyses were carried out using EViews, version 11. The sample was divided into the two groups: "Ante-QE period" (1984 Q1-2008 Q3) and "Post-QE period" (2008 Q4-2021 Q1), and comparisons between the two groups were made using analysis of empirical results. The main findings of this study indicate that: first, with the absence of QE, it exists a long-term negative relationship between Buffett Indicator and S&P500 index annual return, and the former has the ability to predict and explain the latter. Second, S&P500 index continues hitting a historical record high with the role of QE and extremely low interest rates; however, at the same time, Buffett Indicator loses the predictive power to explain S&P500 index and its annual return. Lastly, Buffett Indicator's ability to predict the annualized return of the S&P500 index will be affected by the holding period (forecast horizon), and Buffett Indicator is suitable for a long-term return predictor.
〔1〕G. Banerji (2021). “Americans Can’t Get Enough of the Stock Market.” THE WALL STREET JOURNAL. May 8, 2021.
〔2〕W. Buffett & C. Loomis (2001). “FORTUNE Magazine”, December, 2001.
〔3〕J. Campbell & R. Shiller (1998). “Valuation Ratios and the Long-Run Stock Market Outlook”, 24:2, 11-26.
〔4〕D. Kuvshinov & K. Zimmermann (2018). “The Big Bang: Stock Market Capitalization in the Long Run.” EHES WORKING PAPERS IN ECONOMIC HISTORY, NO. 136.
〔5〕S. Lleo & W. T. Ziemba (2018). “Can Warren Buffett forecast equity market corrections?” The European Journal of Finance, 25:4, 369-393.
〔6〕Haldane, Roberts-Sklar, Wieladek and Young (2016). “QE: the story so far.” Staff Working Paper, Bank of England, No. 624.
〔7〕S. Corbet, J. Dunne & C. Larkin (2019). “Quantitative easing announcements and high-frequency stock market volatility: Evidence from the United States.”, Research in International Business and Finance, 48, 321-334.
〔8〕R. Bhar, A. G. Malliaris & M. Malliaris (2015). “The impact of large-scale asset purchases on the S&P 500 index, long-term interest rates and unemployment”, Applied Economics, 47:55, 6010-6018.
〔9〕S. Al-Jassar & I. Moosa (2019). “The effect of quantitative easing on stock prices: a structural time series approach.” Applied Economics, 51:17, 1817-1827.
〔10〕I. Shah, F. Schmidt-Fischer, I. Malki & R. Hatfield (2019). “A structural break approach to analysing the impact of the QE portfolio balance channel on the US stock market.” International Review of Financial Analysis, 64, 204-220.
〔11〕游淑雅、連欣儀、施禹岑、鍾秉諺、 高超洋、朱美智和黃也欣,「主要國家貨幣政策操作程序簡介」,中央銀行國際金融參考資料,第七十輯,88-188頁,民國107年。
〔12〕B. Lobo (2000). “Asymmetric effects of interest rate changes on stock prices.” Financial Review, 35:3, 125-144.
〔13〕B. Bernanke & K. Kuttner (2005). “What Explains the Stock Market’s Reaction to Federal Reserve Policy?”, Journal of Finance, 3, 1221-1257.
〔14〕B. Bernanke & A. Blinder (1992). “The Federal Funds Rate and the Channels of Monetary Transmission.” American Economic Review, 82:4, 901–921.
〔15〕O. Ratanapakorn & S. Sharma (2007). “Dynamic analysis between the US stock returns and the macroeconomic variables.”, Applied Financial Economics, 17:5, 369-377.
〔16〕C. Rosa (2011). “Words that shake traders: The stock market's reaction to central bank communication in real time.”, Journal of Empirical Finance, 18:5 ,915-934.
〔17〕S. S. CHEN (2007). “Does Monetary Policy Have Asymmetric Effects on Stock Returns?”, Journal of Money, Credit and Banking, 39:2–3, 668-688.
〔18〕A. Kontonikas, R. MacDonald & A. Saggu (2013). “Stock market reaction to fed funds rate surprises: State dependence and the financial crisis.”, Journal of Banking & Finance, 37:11, 4025-4037.
〔19〕陳旭昇,時間序列分析——總體經濟與財務金融之應用,二版,東華書局,臺北市,民國一百零二年。
〔20〕C. W. Granger and P. Newbold (1974). “Spurious Regression in Econometrics.” Journal of Econometrics, 2:2, 111-120.
〔21〕D. A. Dickey and W. A. Fuller (1979). “Distribution of the Estimators for Autoregressive Time Series with a Unit Root.” Journal of the American Statistical Association, 74:366, 427-431.
〔22〕S. E. Said and D. A. Dickey (1984). “Testing for unit roots in autoregressive-moving average models of unknown order.” Biometrika, 71:3, 599-607.
〔23〕R. Engle & B. Yoo (1986). “Forecasting and testing in co-integrated systems.” Journal of Econometrics, 35:1, 143-159.
〔24〕S. Johansen (1988). “Statistical analysis of cointegration vectors.” Journal of Economic Dynamics and Control, 12:3, 231-254.
〔25〕R. F. Engle & C. W. J. Granger (1987). “Co-Integration and Error Correction: Representation, Estimation, and Testing.” Econometrica, 55:2, 251-276.
〔26〕A. R. Pagan & M. R. Wickens (1989). “A Survey of Some Recent Econometric Methods.” The Economic Journal, 99:398, 962-1025.
〔27〕S. Johansen & K. Juselius (1990). “MAXIMUM LIKELIHOOD ESTIMATION AND INFERENCE ON COINTEGRATION — WITH APPLICATIONS TO THE DEMAND FOR MONEY.”, Oxford Bulletin of Economics and Statistics, 52:2, 115-225.
〔28〕C. W. J. Granger (1969). “Investigating Causal Relations by Econometric Models and Cross-spectral Methods.” Econometrica, 37:3, 424-438.
〔29〕J. McClave, P. Benson & T. Sincich (Eds.), Statistics for Business and Economics., Pearson, 2018.