跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳靜芳
Ching-Fang Wu
論文名稱: 論巴菲特指標評估美國股市的能力: QE實施前與後的實證分析比較
A study on the ability of Buffett Indicator to assess the US stock market: empirical comparisons with the role of QE in the stock market
指導教授: 曹壽民
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 39
中文關鍵詞: 巴菲特指標量化寬鬆政策聯邦資金利率標準普爾500指數時間序列單根檢定共整合檢定Granger因果關係檢定
外文關鍵詞: Buffett indicator, Quantitative easing, Federal fund rate, S&P 500, Time series, Unit root test, Cointegration test, Granger causality test
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑒於巴菲特指標在學術上甚少被探討,故本文主要探究在非常規貨幣政策—量化寬鬆 (quantitative easing, QE) 實施下,巴菲特指標對S&P500股價指數與其年報酬的衡量能力。本研究以時間序列分析,研究變數為巴菲特指標、S&P500股價指數與其年報酬、聯準會負債與聯邦資金率,使用EViews軟體進行單根檢定、共整合檢定、Granger因果檢定與迴歸分析。研究樣本期間切割為「量化寬鬆 (QE) 實施前」(1984年Q1 - 2008年Q3期間) 及「量化寬鬆 (QE) 實施後」(2008年Q4 - 2021年Q1期間),並比較實證分析結果。本文主要發現:其一,QE實施前,巴菲特指標與S&P500指數年報酬呈現長期負向相關,且巴菲特指標對S&P500指數年報酬具有預測與解釋的能力。其二,QE實施後,低利率與量化寬鬆政策為影響S&P500股價指數持續創歷史新高的重要因素,但是巴菲特指標對S&P500股價指數與其年報酬卻已皆不具任何預測與衡量的能力。最後,巴菲特指標預測S&P500股價指數年報酬的能力會受到預測時間幅度影響,而巴菲特指標適合做為長期報酬衡量指標。


    Since researchers have not treated Buffett Indicator in much detail, an objective of this study is to investigate measurement capability of Buffett Indicator on both S&P500 index and its annualized return with the role of quantitative easing (QE). With Buffett Indicator, S&P500 index and its annualized return, Federal Reserve’s debt, and federal funding rate being the research variables, we used time series analysis, conducting single-root test, co-integration test, and Granger causality test. All analyses were carried out using EViews, version 11. The sample was divided into the two groups: "Ante-QE period" (1984 Q1-2008 Q3) and "Post-QE period" (2008 Q4-2021 Q1), and comparisons between the two groups were made using analysis of empirical results. The main findings of this study indicate that: first, with the absence of QE, it exists a long-term negative relationship between Buffett Indicator and S&P500 index annual return, and the former has the ability to predict and explain the latter. Second, S&P500 index continues hitting a historical record high with the role of QE and extremely low interest rates; however, at the same time, Buffett Indicator loses the predictive power to explain S&P500 index and its annual return. Lastly, Buffett Indicator's ability to predict the annualized return of the S&P500 index will be affected by the holding period (forecast horizon), and Buffett Indicator is suitable for a long-term return predictor.

    摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 v 一、緒論 1 1-1 研究動機與背景 1 1-2 研究目的 2 1-3 研究架構 3 二、文獻探討 4 2-1 巴菲特指標 4 2-2 量化寬鬆政策與股權市場 5 2-3 聯邦資金利率與股權市場 6 三、研究方法與模型設定 8 3-1 研究流程 8 3-2 單根檢定 11 3-3 共整合檢定 12 3-4 Granger因果關係 15 3-5 迴歸分析 16 四、實證分析結果 17 4-1 資料來源與研究期間 17 4-2 單根檢定實證分析 17 4-3 共整合檢定實證分析 19 4-4 Granger因果關係檢定 21 4-5 迴歸分析 23 五、結論與研究限制 24 5-1 研究結論 24 5-2 研究限制與建議 25 參考文獻 27

    〔1〕G. Banerji (2021). “Americans Can’t Get Enough of the Stock Market.” THE WALL STREET JOURNAL. May 8, 2021.

    〔2〕W. Buffett & C. Loomis (2001). “FORTUNE Magazine”, December, 2001.

    〔3〕J. Campbell & R. Shiller (1998). “Valuation Ratios and the Long-Run Stock Market Outlook”, 24:2, 11-26.

    〔4〕D. Kuvshinov & K. Zimmermann (2018). “The Big Bang: Stock Market Capitalization in the Long Run.” EHES WORKING PAPERS IN ECONOMIC HISTORY, NO. 136.

    〔5〕S. Lleo & W. T. Ziemba (2018). “Can Warren Buffett forecast equity market corrections?” The European Journal of Finance, 25:4, 369-393.

    〔6〕Haldane, Roberts-Sklar, Wieladek and Young (2016). “QE: the story so far.” Staff Working Paper, Bank of England, No. 624.

    〔7〕S. Corbet, J. Dunne & C. Larkin (2019). “Quantitative easing announcements and high-frequency stock market volatility: Evidence from the United States.”, Research in International Business and Finance, 48, 321-334.

    〔8〕R. Bhar, A. G. Malliaris & M. Malliaris (2015). “The impact of large-scale asset purchases on the S&P 500 index, long-term interest rates and unemployment”, Applied Economics, 47:55, 6010-6018.

    〔9〕S. Al-Jassar & I. Moosa (2019). “The effect of quantitative easing on stock prices: a structural time series approach.” Applied Economics, 51:17, 1817-1827.

    〔10〕I. Shah, F. Schmidt-Fischer, I. Malki & R. Hatfield (2019). “A structural break approach to analysing the impact of the QE portfolio balance channel on the US stock market.” International Review of Financial Analysis, 64, 204-220.

    〔11〕游淑雅、連欣儀、施禹岑、鍾秉諺、 高超洋、朱美智和黃也欣,「主要國家貨幣政策操作程序簡介」,中央銀行國際金融參考資料,第七十輯,88-188頁,民國107年。

    〔12〕B. Lobo (2000). “Asymmetric effects of interest rate changes on stock prices.” Financial Review, 35:3, 125-144.

    〔13〕B. Bernanke & K. Kuttner (2005). “What Explains the Stock Market’s Reaction to Federal Reserve Policy?”, Journal of Finance, 3, 1221-1257.

    〔14〕B. Bernanke & A. Blinder (1992). “The Federal Funds Rate and the Channels of Monetary Transmission.” American Economic Review, 82:4, 901–921.

    〔15〕O. Ratanapakorn & S. Sharma (2007). “Dynamic analysis between the US stock returns and the macroeconomic variables.”, Applied Financial Economics, 17:5, 369-377.

    〔16〕C. Rosa (2011). “Words that shake traders: The stock market's reaction to central bank communication in real time.”, Journal of Empirical Finance, 18:5 ,915-934.

    〔17〕S. S. CHEN (2007). “Does Monetary Policy Have Asymmetric Effects on Stock Returns?”, Journal of Money, Credit and Banking, 39:2–3, 668-688.

    〔18〕A. Kontonikas, R. MacDonald & A. Saggu (2013). “Stock market reaction to fed funds rate surprises: State dependence and the financial crisis.”, Journal of Banking & Finance, 37:11, 4025-4037.

    〔19〕陳旭昇,時間序列分析——總體經濟與財務金融之應用,二版,東華書局,臺北市,民國一百零二年。

    〔20〕C. W. Granger and P. Newbold (1974). “Spurious Regression in Econometrics.” Journal of Econometrics, 2:2, 111-120.

    〔21〕D. A. Dickey and W. A. Fuller (1979). “Distribution of the Estimators for Autoregressive Time Series with a Unit Root.” Journal of the American Statistical Association, 74:366, 427-431.

    〔22〕S. E. Said and D. A. Dickey (1984). “Testing for unit roots in autoregressive-moving average models of unknown order.” Biometrika, 71:3, 599-607.

    〔23〕R. Engle & B. Yoo (1986). “Forecasting and testing in co-integrated systems.” Journal of Econometrics, 35:1, 143-159.

    〔24〕S. Johansen (1988). “Statistical analysis of cointegration vectors.” Journal of Economic Dynamics and Control, 12:3, 231-254.

    〔25〕R. F. Engle & C. W. J. Granger (1987). “Co-Integration and Error Correction: Representation, Estimation, and Testing.” Econometrica, 55:2, 251-276.

    〔26〕A. R. Pagan & M. R. Wickens (1989). “A Survey of Some Recent Econometric Methods.” The Economic Journal, 99:398, 962-1025.

    〔27〕S. Johansen & K. Juselius (1990). “MAXIMUM LIKELIHOOD ESTIMATION AND INFERENCE ON COINTEGRATION — WITH APPLICATIONS TO THE DEMAND FOR MONEY.”, Oxford Bulletin of Economics and Statistics, 52:2, 115-225.

    〔28〕C. W. J. Granger (1969). “Investigating Causal Relations by Econometric Models and Cross-spectral Methods.” Econometrica, 37:3, 424-438.

    〔29〕J. McClave, P. Benson & T. Sincich (Eds.), Statistics for Business and Economics., Pearson, 2018.

    QR CODE
    :::