| 研究生: |
邱柏齊 Po-Chi Chiu |
|---|---|
| 論文名稱: |
利用LC電路開發低質量軸子探測器 Developing a Low-Mass Axion Detector Using an LC Circuit |
| 指導教授: |
余欣珊
Shin-Shan Yu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 軸子 、LC電路 |
| 外文關鍵詞: | axion, LC circuit |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們的 LC 電路探測器的目標是仔細研究質量約為 0.5μeV(對應於
120 MHz 頻率)的難以捉摸的軸子。在外加強磁場的存在下,軸子能夠
引發一種奇異電流,從而產生微弱但可察覺的振盪磁場。傳統的使用
腔體法的方式在這麼低頻率下檢測信號是不切實際的。為了克服這一
限制,我們提出了一種新穎的策略,即利用 LC 電路的諧振頻率來放大
我們對軸子引起的磁場的探測。這個 LC 電路的諧振頻率被設計為可調
諧,這一特性可以通過調整電容來實現。這不僅為我們提供了一個增
強信號的多功能工具,還開闢了探索軸子質量潛在變化的途徑。
通過精細調整 LC 電路的電容,我們可以精確控制並探索一系列共振
頻率。這種動態調諧能力對於適應不同的實驗條件和優化我們的探測
系統的靈敏度至關重要。此外,它使我們能夠在軸子質量上進行全面
的搜索,為這些難以捉摸的粒子的基本特性提供有價值的見解。本質
上,我們的創新方法利用了 LC 電路中的諧振頻率調諧的力量,提供了
一種複雜且可適應的手段來探索軸子物理的複雜性。這不僅增強了我
們檢測軸子引起的磁場的能力,還使我們處於尖端研究的前沿,推動
我們對基本粒子及其行為的理解邊界。
The objective of our LC circuit detector is to meticulously investigate the elusive axion with a specific mass hovering around 0.5 µ eV, corresponding to a frequency of 120 MHz.
In the presence of a strong static magnetic field, axions can instigate an exotic current, thereby inducing a subtle yet discernible oscillating magnetic field. The conventional
approach of employing the cavity method proves impractical for detecting signals at such low frequencies. To overcome this limitation, we propose a novel strategy that involves leveraging the resonant frequency of an LC circuit to amplify our pursuit of the axion-induced magnetic field. This LC circuit’s resonant frequency is designed to be tunable, a feature achievable by adjusting the capacitance. This not only provides us with a versatile tool for signal enhancement but also opens up avenues for probing potential variations in the axion’s mass.
By finely tuning the capacitance of the LC circuit, we can precisely control and explore a range of resonant frequencies. This dynamic tuning capability is instrumental
in adapting to different experimental conditions and optimizing the sensitivity of our detection system. Furthermore, it enables us to conduct a comprehensive search in the axion’s mass, offering valuable insights into the fundamental properties of these elusive particles. In essence, our innovative approach harnesses the power of resonant frequency tuning in an LC circuit, providing a sophisticated and adaptable means to explore the intricacies of axion physics. This not only enhances our ability to detect the axion-induced magnetic field but also positions us at the forefront of cutting-edge research, pushing the boundaries of our understanding of fundamental particles and
their behaviors
bibliography
[1] V. C. Rubin, W. K. Jr. Ford, and N. Thonnard. “A New Light Boson?” In: Astrophysical Journal (1978). D O I: 10.1086/182804.
[2] R. D. Peccei and Helen R. Quinn. “CP Conservation in the Presence of Pseudoparticles”. In: Phys. Rev. Lett. 38 (25 1977), pp. 1440–1443. D O I: 10.1103/
PhysRevLett.38.1440. U R L: https://link.aps.org/doi/10.1103/
PhysRevLett.38.1440.
[3] Steven Weinberg. “A New Light Boson?” In: Phys. Rev. Lett. 40 (4 1978), pp. 223–
226. D O I: 10.1103/PhysRevLett.40.223. U R L: https://link.aps.
org/doi/10.1103/PhysRevLett.40.223.
[4] F. Wilczek. “Problem of Strong P and T Invariance in the Presence of Instantons”.
In: Phys. Rev. Lett. 40 (5 1978), pp. 279–282. D O I: 10.1103/PhysRevLett.40.
279. U R L: https://link.aps.org/doi/10.1103/PhysRevLett.40.
279.
[5] Jihn E. Kim. “Weak Interaction Singlet and Strong CP Invariance”. In: Phys. Rev.
Lett. 43 (1979), p. 103. D O I: 10.1103/PhysRevLett.43.103.
[6] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Zakharov. “Can Confinement
Ensure Natural CP Invariance of Strong Interactions?” In: Nucl. Phys. B 166 (1980),
pp. 493–506. D O I: 10.1016/0550-3213(80)90209-6.
[7] Michael Dine, Willy Fischler, and Mark Srednicki. “A Simple Solution to the
Strong CP Problem with a Harmless Axion”. In: Phys. Lett. B 104 (1981), pp. 199–
202. D O I: 10.1016/0370-2693(81)90590-6.
[8] A. R. Zhitnitsky. “On Possible Suppression of the Axion Hadron Interactions. (In
Russian)”. In: Sov. J. Nucl. Phys. 31 (1980), p. 260.
[9] A. RINGWALD. “AXIONS AND AXION-LIKE PARTICLES”. In: PNAS (2013).
[10] a J. Gal´an. “Exploring 0.1–10 eV axions with a new helioscope concept”. In:
JCAP12(2015)012 (2015).
[11] C. Hagmann et al. “Results from a High-Sensitivity Search for Cosmic Axions”.
In: Phys. Rev. Lett. 80 (10 1998), pp. 2043–2046. D O I: 10.1103/PhysRevLett.
80.2043. U R L: https://link.aps.org/doi/10.1103/PhysRevLett.
80.2043.
[12] S. J. Asztalos et al. “Experimental Constraints on the Axion Dark Matter Halo
Density”. In: The Astrophysical Journal 571.1 (2002), pp. L27–L30. D O I: 10.1086/
341130. U R L: https://doi.org/10.1086/341130.
[13] S. J. Asztalos et al. “Improved rf cavity search for halo axions”. In: Phys. Rev. D
69 (1 2004), 011101 (R). D O I: 10.1103/PhysRevD.69.011101. U R L: https:
//link.aps.org/doi/10.1103/PhysRevD.69.011101.
[14] S. J. Asztalos et al. “SQUID-Based Microwave Cavity Search for Dark-Matter Axions”. In: Phys. Rev. Lett. 104 (4 2010), p. 041301. D O I: 10.1103/PhysRevLett.
104.041301. U R L: https://link.aps.org/doi/10.1103/PhysRevLett.
104.041301.
[15] N. Du et al. “Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment”. In: Phys. Rev. Lett. 120 (15 2018), p. 151301. D O I: 10.1103/
PhysRevLett . 120 . 151301. U R L: https : / / link . aps . org / doi / 10 .
1103/PhysRevLett.120.151301.
[16] T. Braine et al. “Extended Search for the Invisible Axion with the Axion Dark
Matter Experiment”. In: Phys. Rev. Lett. 124 (10 2020), p. 101303. D O I: 10.1103/
PhysRevLett . 124 . 101303. U R L: https : / / link . aps . org / doi / 10 .
1103/PhysRevLett.124.101303.
[17] C. Bartram et al. “Search for Invisible Axion Dark Matter in the 3.3–4.2 µeV
Mass Range”. In: Phys. Rev. Lett. 127.26 (2021), p. 261803. D O I: 10 . 1103 /
PhysRevLett.127.261803.
[18] S. Lee et al. “Axion Dark Matter Search around 6.7 µeV”. In: Phys. Rev. Lett.
124.10 (2020), p. 101802. D O I: 10.1103/PhysRevLett.124.101802. arXiv:
2001.05102 [hep-ex].
[19] Junu Jeong et al. “Search for Invisible Axion Dark Matter with a Multiple-Cell
Haloscope”. In: Phys. Rev. Lett. 125.22 (2020), p. 221302. D O I: 10.1103/PhysRevLett.
125.221302. arXiv: 2008.10141 [hep-ex].
[20] Ohjoon Kwon et al. “First Results from an Axion Haloscope at CAPP around
10.7 µeV”. In: Phys. Rev. Lett. 126 (19 2021), p. 191802. D O I: 10.1103/PhysRevLett.
126.191802. U R L: https://link.aps.org/doi/10.1103/PhysRevLett.
126.191802.
[21] K. M. Backes et al. “A quantum enhanced search for dark matter axions”. In:
Nature 590.7845 (2021), 238–242. I S S N: 1476-4687. D O I: 10.1038/s41586-021-
03226-7. U R L: http://dx.doi.org/10.1038/s41586-021-03226-7.
[22] B. M. Brubaker et al. “First results from a microwave cavity axion search at 24
µeV”. In: Phys. Rev. Lett. 118.6 (2017), p. 061302. D O I: 10.1103/PhysRevLett.
118.061302. arXiv: 1610.02580 [astro-ph.CO].
[23] L. Zhong et al. “Results from phase 1 of the HAYSTAC microwave cavity axion
experiment”. In: Phys. Rev. D 97.9 (2018), p. 092001. D O I: 10.1103/PhysRevD.
97.092001. arXiv: 1803.03690 [hep-ex].
[24] Hsin Chang et al. “First Results from the Taiwan Axion Search Experiment with a
Haloscope at 19.6 µeV”. In: Phys. Rev. Lett. (2022). D O I: 10.1103/PhysRevLett.
129.111802.
[25] NJ Neta A Bahcall Princeton. “Dark-matter QCD-axion searches.” In: arXiv:1407.0546v1
(2014).
[26] N. Crisosto et al. “Results from a Superconducting LC Circuit Investigating Cold
Axions”. In: Phys. Rev. Lett. (2019).
[27] L. Brouwer et al. “Projected Sensitivity of DMRadio: A Search for the QCD Axion
Below 1 µeV ”. In: Phys. Rev. Lett. (2022).
[28] Jonathan L. Ouellet et al. “Design and Implementation of the ABRACADABRA-10
cm Axion Dark Matter Search”. In: (2019).
[29] Antoine Garcon et al. “Constraints on bosonic dark matter from ultralow-field
nuclear magnetic resonance”. In: (2019).
[30] Jonathan Ouellet and Zachary Bogorad. “Solutions to axion electrodynamics in
various geometries”. In: (2019). D O I: 10.1103/PhysRevD.99.055010.
[31] N. Crisosto, N. S. Sullivan P. Sikivie, and D. B. Tanner. “ADMX SLIC: Results
from a Superconducting LC Circuit Investigating Cold Axions”. In: (2020). D O I:
10.1103/PhysRevLett.124.241101.
[32] CalculateInductance. In: (). U R L: https://www.qsl.net/in3otd/ind2calc.
html.
[33] PTFE. In: (). U R L: https://catalog.wshampshire.com/Asset/psg_
teflon_ptfe.pdf.
[34] PEEK. In: (). U R L: https://tw.misumi-ec.com/pdf/fa/2015/p2_981.
pdf.
[35] PureCopper. In: (). U R L: https://www.engineeringtoolbox.com/materialproperties-t_24.html.
[36] Hsin Chang et al. “TASEH: A haloscope axion search experiment”. In: (May 2022).
arXiv: 2205.01477 [physics.ins-det]. U R L: https://arxiv.org/abs/
2205.01477.
[38] Mini-Circuits. In: (). U R L: https://www.minicircuits.com/WebStore/
dashboard.html?model=ZX60-3018G-S%2B.
[39] Inc. Cosmic Microwave Technology. In: (). U R L: https://www.cosmicmicrowavetechnocom/citlf2.
[40] P. Sikivie, N. Sullivan, and D. B. Tanner. “Proposal for Axion Dark Matter Detection
Using an LC Circuit”. In: Phys. Rev. Lett. (2014). D O I: 10.1103/PhysRevLett.
112.131301.