跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴德喜
Desi Ramadani
論文名稱: 分析氣候變遷對中部楠榜縣種植季節的影響:優化灌溉種植模式
Analyze the Impact of Climate Change on Planting Seasons in Central Lampung Regency : Optimizing Irrigation Cropping Pattern
指導教授: 吳瑞賢
Wu Ray-Shyan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 91
中文關鍵詞: 氣候變化灌溉優化種植模式
外文關鍵詞: Climate Change, Irrigation Optimization, Cropping Pattern
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究調查了氣候變遷對中央蘭邦縣比克里灌溉區種植季節的影響,以及優化灌溉作物模式以減輕乾旱的不利影響。研究使用了Thiessen多邊形方法進行降雨分佈分析,並使用CROPWAT 8.0 應用程序計算蒸發蒸散量。研究結果顯示,在研究期間,年降雨量顯著減少,氣溫上升,導致作物的水需求增加。分析強調了適應性種植模式和高效水管理的重要性,以應對這些挑戰。玉米作物的總水需求從氣候變遷前的378.0公升/秒/公頃增加到氣候變遷後的492.8公升/秒/公頃。因此,灌溉面積由2,471公頃縮減至1,727公頃,年經濟效益從34,350,082,705印尼盾減少到24,006,724,774印尼盾。此外,研究還通過線性規劃優化探索了各種種植策略,顯示多樣化的種植模式,包括玉米、大豆、豆類和洋蔥,能顯著提高經濟效益。此研究強調了持續監測和適應的重要性,以在持續氣候變遷的背景下維持可持續的農業實踐。


    This study investigates the impact of climate change on planting seasons in the Bekri Irrigation Area, Central Lampung Regency, and the optimization of irrigation cropping patterns to mitigate the adverse effects of drought. The research employs the Thiessen Polygon Method for rainfall distribution analysis and the CROPWAT 8.0 application for evapotranspiration calculations. The findings reveal a significant decrease in annual rainfall and an increase in temperatures over the study period, resulting in higher water requirements for crops. The analysis highlights the necessity of adaptive planting patterns and efficient water management to address these challenges. Total water requirements for corn crops increased from 378.0 lt/s/ha before climate change to 492.8 lt/s/ha after climate change. Consequently, the irrigated area shrank from 2,471 hectares to 1,727 hectares, resulting in a decrease in annual economic benefit from Rp34,350,082,705 to Rp24,006,724,774. Additionally, the study explores various planting strategies through linear programming optimization, demonstrating that diversified cropping patterns, including corn, soybeans, beans, and onions, can significantly enhance economic benefits. This research underscores the importance of continuous monitoring and adaptation to maintain sustainable agricultural practices in the face of ongoing climate change.

    TABLE OF CONTENTS 摘 要 i ABSTRACT ii TABLE OF CONTENTS iii LIST OF TABLES vi LIST OF FIGURES viii I. Introduction 1 1.1. Background 1 1.2. Research Questions 2 1.3. Research Objectives 3 1.4. Scope and Limitation 3 II. Theoretical Framework 4 2.1. Introduction 4 2.2. Water Availability 4 2.2.1. Impact of Climate Change 4 2.2.2. Optimization of Water Availability 5 2.3. Water Requirements for Crops 5 2.3.1. Impact of Climate Change 5 2.3.2. Managing Water Requirements 5 2.4. Mitigation Strategies 5 2.4.1. Irrigation Efficiency 5 2.4.2. Drought-Resistant Crop Varieties 6 2.4.3. Improved Water Management Practices 6 2.5. Irrigation Cropping Patterns 6 2.5.1. Crop Rotation and Intercropping 6 2.5.2. Crop Selection Based on Water Needs 6 2.6. Hydrological Cycle 6 2.7. Irrigation System 7 2.8. Irrigation Water Availability 8 2.8.1. Dependable Flow 8 2.8.2. Dependable and Effective Rainfall 9 2.9. Irrigation Water Requirements 9 2.9.1. Evapotranspiration (ETo) 9 2.9.2. Crop Water Requirement (CWR) 10 2.9.3. Net Irrigation Water Requirements (NIR) 11 2.9.4. Preperation Period for Irrigation Land 11 2.9.5. Water Requirements for Land Preparation (IR) 11 2.9.6. Percolation (P) 13 2.9.7. Plant Coefficent (Kc) 13 2.10.Water Balance 14 2.11.Cropping Pattens 14 2.12.Optimizing Irrigation by Linear Programming 15 2.12.1. Objective Function 15 2.12.2. Contrains 15 2.12.3. Mathematical Model of Linear Programming 16 III. Methodology 17 3.1. Study Location 17 3.2. Irrigation Network Scheme 18 3.3. Data Collection 18 3.3.1. Harvested Area, Paddy Production and Productivity Data 18 3.3.2. Dry Season Crops Data 19 3.3.3. Climate Data 19 3.3.4. Streamflow Data 20 3.3.5. Rainfall Data 21 3.3.6. Economic Comparison of Various Crops 21 3.4. Data Analysis 22 3.5. Research Flowchart 24 IV. Results and Discussions 25 4.1. Bekri Irrigation Areal 25 4.1.1. Rainfall Data Consistency Test 26 4.2. Rainfall Analysis 28 4.2.1. Annual Rainfall Trends 28 4.2.2. Comparison of Monthly Rainfall Trends Before and After Climate Change 29 4.2.3. Regional Rainfall Analysis with Thiessen Method 30 4.2.4. Effective Rainfall (Re) 33 4.3. Climate Analysis 36 4.3.1. Temperature Trends 36 4.3.2. Comparison of Monthly Temperature Trends Before and After Climate Change 37 4.3.3. Potential Evapotranspiration (ETo) 38 4.4. Streamflow Analysis 41 4.5. Hydrology and Climatology Analysis for Dry Season 43 4.5.1. Effective Rainfall for Field Crop in Dry Season 43 4.5.2. Potential Evapotranspiration for Dry Season 44 4.6. Analysis of Irrigation Water Requirement for Dry Season 45 4.6.1. Percolation (P) 45 4.6.2. Crop Coefficient (Kc) 46 4.6.3. Water Requirement for Land Preparation (IR) 46 4.6.4. Irrigation Efficiency 47 4.6.5. Irrigation Water Requirement 47 4.7. Water Available 50 4.8. Optimization by Using Linear Programming 51 4.8.1. Optimization Methodology 51 4.8.2. Data and Assumptions 52 4.8.3. Calculation Process 52 4.9. Recapitulation of Optimization Result 54 V. Conclusions 59 Bibliography 61 APPENDIX 64

    Bibliography
    Agricultural Systems. (2023). Optimizing irrigation systems. Agricultural Systems, 67(4), 321-335. doi:10.1016/j.agsy.2023.102309
    Alfrida, M. (2012). Water balance concept for efficient water use. Journal of Environmental Hydrology, 20(5), 1-10.
    Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements (FAO Irrigation and Drainage Paper 56). Food and Agriculture Organization, Rome.
    Aprizal, & Nur Yuniar. (2017). Research on percolation values in the Sekampung Irrigation System. Journal of Irrigation Science, 45(3), 201-215. doi:10.1007/s00271-017-0567-2
    Asian Development Bank. (2016). Water resources management in Asia. Asian Development Bank, Manila.
    Badan Meteorologi, Klimatologi, dan Geofisika. (2020). Climate data summary. BMKG, Jakarta.
    Badan Pusat Statistik. (2021). Indonesia statistical yearbook. Badan Pusat Statistik, Jakarta.
    Bardan. (2014). Irrigation efficiency: A study. Journal of Agricultural Water Management, 87(2), 145-159. doi:10.1016/j.agwat.2014.05.012
    Department of Public Works. (2006). Irrigation network planning. Kementerian Pekerjaan Umum, Jakarta.
    Dina, R. (2017). Optimization of agricultural water use through linear programming. Journal of Irrigation and Drainage Engineering, 143(9), 1-10. doi:10.1061/(ASCE)IR.1943-4774.0001195
    FAO. (2020). Climate change and agriculture. Food and Agriculture Organization, Rome.
    Food and Agriculture Organization of the United Nations. (2017). Irrigation techniques. FAO, Rome.
    Food and Agriculture Organization of the United Nations. (2020). The state of food and agriculture. FAO, Rome.
    Indonesian Ministry of Public Works. (2015). Irrigation network development. Kementerian Pekerjaan Umum, Jakarta.
    Intergovernmental Panel on Climate Change. (2021). Climate change 2021: The physical science basis. IPCC, Geneva.
    International Journal of Water Resources Development. (2018). Advances in irrigation systems, 35(2), 89-104. doi:10.1080/07900627.2017.1414973
    Irrigation Association. (2018). Subsurface irrigation. Irrigation Association, Falls Church, VA.
    Journal of Climate. (2022). Climate trends and variability, 35(4), 301-315. doi:10.1175/JCLI-D-21-0012.1
    Kartasapoetra, A. G. (1994). Teknologi irigasi (Irrigation Technology). Rineka Cipta, Jakarta.
    Kementerian Pekerjaan Umum. (2013). Kriteria perencanaan irigasi di Indonesia (KP-01) (Irrigation Planning Criteria in Indonesia). Kementerian Pekerjaan Umum, Jakarta.
    Maidment, D. R. (1993). Handbook of hydrology. McGraw-Hill Education, New York.
    Ministry of Agriculture, Indonesia. (2021). National agricultural strategy. Kementerian Pertanian Indonesia, Jakarta.
    NASA Earth Observatory. (2021). Water cycle. NASA Earth Observatory, Washington, DC.
    National Geographic Society. (2022). Climate change impacts. National Geographic Society, Washington, DC.
    National Oceanic and Atmospheric Administration. (2020). What is the water cycle? NOAA, Silver Spring, MD.
    Nature Climate Change. (2023). Climate change and agriculture. Nature Publishing Group, London.
    Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032), 120-145.
    Soemarto, C. D. (1999). Hidrologi teknik (Technical Hydrology). Erlangga, Jakarta.
    Thiessen, A. H. (1911). Precipitation averages for large areas. Monthly Weather Review, 39(7), 1082-1084.
    Triatmodjo, B. (2016). Hidrologi terapan (Applied Hydrology). Beta Offset, Yogyakarta.
    U.S. Geological Survey. (2019). The water cycle. U.S. Geological Survey, Reston, VA.
    United Nations Development Programme. (2020). Sustainable agriculture initiatives. UNDP, New York.
    United Nations Water. (2021). Sustainable water management. United Nations, New York.
    United States Department of Agriculture. (2019). Irrigation methods. USDA, Washington, DC.
    Van de Goor, G., & Zijlstra, G. (1968). Methods of estimating water requirements of crops. Institute of Land Reclamation and Improvement, Netherlands.
    Water Resources Research. (2022). Irrigation efficiency and water management. Wiley Online Library, Hoboken, NJ.
    World Bank Group. (2019). Climate change and food security. World Bank Group, Washington, DC.
    World Bank Group. (2020). Drip irrigation for sustainable agriculture. World Bank Group, Washington, DC.. 

    QR CODE
    :::