| 研究生: |
賴皆錞 Jian-Chen Lia |
|---|---|
| 論文名稱: |
動態號誌時制控制模型求解演算法之研究 |
| 指導教授: |
陳惠國
Huey-Kuo Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
i
動態號誌時制控制模型為雙層規劃(bi-level programming)模型之
應用。模型中包含上層模型—動態號誌時制最佳化模型與下層模型—
動態用路人均衡路徑選擇模型,其中上層模型的目標為使系統總旅
行成本最小,而下層模型則希望用路人在擁有完整的交通資訊下,
依據自身旅運成本最小化觀念,其路徑選擇結果能符合動態用路人
均衡路徑選擇模型之均衡條件,兩者構成Stackelberg 競局。
本研究即根據周鄭義(1999)所構建的動態號誌時制控制模型進
行一系列的求解演算法探討。由於在求解過程中必須求取變分不等
式敏感度分析資訊,因此研究中應用最短距離法進行敏感度分析,
並與廣義反矩陣方法作一比較。而透過最短距離法敏感度分析結果,
重新探討一般在求解網路設計問題時所應用的演算法,並針對動態
路網的特性,重新加以修正與改進。研究中提出四種以敏感度分析
為基礎的求解演算法,包括:SDAP、SDAA、GEDO 與LAA 法,
而經由數例的測試,其中以SDAA 法兼具演算效率與效能,未來可朝實證研究繼續發展。
The dynamic signal timings control (DSTC) model is an application
of bilevel programming model, including the upper level, dynamic signal
timings optimal model, and the lower level, dynamic user equilibrium
route choice model. The DSTC model may be described as a Stackelberg
game, among the upper level tries to minimum the total travel cost by
allocating the green times and determining link capacities. The lower
level, based on the fixed link capacities , searches the shortest travel time
route for use, which can be mathematically represented by the dynamic
user-optimal conditions.
In this research, we consider several heuristic algorithms for the
DSTC model which is constructed by Chou (1999). In the iterative
processes of algorithms, the minimum distance approach is used to obtain
the sensitivity analysis information for the dynamic user equilibrium
route choice model. Besides we verify the difference between the
minimum distance and generalized inverse approach for the equilibrium
network flow. Through the derivative information, we analyze four
heuristics sensitivity analysis based algorithms, including : SDAP, SDAA,
GEDO, and LAA. Numerical examples are implemented. According to
the result, the SDAA is better than other methods.
1. 周鄭義,1999,動態號誌時制最佳化之研究–雙層規劃模型之應
用,國立中央大學土木工程學系碩士論文。
2. 張佳偉,1997,路徑變數產生法求解動態交通量指派模型之效率
比較,國立中央大學土木工程學系碩士論文。
3. 薛哲夫,1996,明確型動態旅運選擇模型之研究,國立中央大學
土木工程學系碩士論文。
4. 卓訓榮,1991,「以廣義反矩陣方法探討均衡路網流量的敏感度
分析」,運輸計劃季刊,第二十卷,第一期,頁1~14。
5. 卓訓榮,1992,「最短距離與廣義反矩陣敏感度分析方法之比較」,
運輸計劃季刊,第二十一卷,第一期,頁23~34。
6. 卓訓榮,羅仕京,1999,「以廣義反矩陣的特性推導路徑非負流
量之研究」,運輸學刊,第十一卷,第二期,頁39~48。
7. 卓訓榮,林培煒,1999,「均衡路網流量敏感度分析路網資訊獨
立性之研究」,運輸學刊,第十一卷,第四期,頁73~86。
8. 王新發,張保隆,卓訓榮,1995,「應用敏感度分析資訊解均衡
路網設計問題」,管理與系統,第二卷,第一期,頁51-63。
9. 陳惠國,1990,「交通感應號誌系統:雙層規劃模型的建立與實
證」,中華民國運輸學會第五屆論文研討會論文集,台北,頁
10. Abdulaal M., and LeBlanc L.J., 1979, “Continuous Equilibrium
Network Design Models,” Transportation Research, Vol. 13B, No. 1,
pp. 19-32.
11. Armijo L., 1966, “Minimization of Functions Having Lipschitz
Continuous First Partial Derivatives,” Pacific Journal of Mathematics.
Vol 16, No. 1, pp. 1-3 .
12. Bertsekas D.P., 1976, “On the Goldstein-Levin-Poljak Gradient
Projection Method,” IEEE Transactions on Automatic Control, Vol.
AC-21, pp. 174-184.
13. Bertsekas D.P., 1982, Constrained Optimization and Lagrange
Multiplier Method, Academic Press, Inc, New York.
14. Chen H.K., 1999, Dynamic Travel Choice Models : A Variational
Inequality Approach, Springer-Verlag, Berling.
15. Chen H.K. and Hsueh C.F., 1996, “A Dynamic User-Optimal Route
Choice Problem Using a Link-Based Variational Inequality
Formulation,” Paper Presented at The 5th World Congress of the
RSAI Conference, Tokyo, Japan.
16. Chen H.K. and Hsueh C.F., 1998, “A Model and an Algorithm for the
Dynamic User-Optimal Route Choice Problem,” Transportation
Research, Vol. 32(B), No. 3, pp. 219-234.
17. Cho H.J., and Chen H.H., 1991, “Bilevel Optimization and Resource
Allocation in Transportation Network Signal Design,” Transportation
Planning Journal, Vol. 20, pp. 461-474.
18. Cho H.J., and Lo S.C., 2000, “Solving Bilevel Network Design
Problem Using a Linear Reaction Function without Nondegeneracy
Assumption,” Transportation Research Record, No 1667, pp. 96-106.
19. Cho H.J., and Smith T.E., and Friesz T.L., 2000, “A Reduction
Method for Local Sensitivity Analyses of Network Equilibrium Arc
Flows,” Transportation Research, Vol. 34B, pp. 31-51.
20. Dafermos S.C., and Nagurney A., 1984, “Sensitivity Analysis for the
Asymmetric Network Equilibrium Problem,” Mathematical
Programming, Vol. 28, pp. 174-184.
21. Fisk C.S., 1984, “Game Theorem and Transportation System
Modelling,” Transportation Research, 18(B), pp. 301-313.
22. Friesz T.L., and Harker P.T., 1985, “Properties of the Iterative
Optimization Equilibrium Algorithm,” Civil Engineering System, Vol.
2, pp. 142-154.
23. Friesz T.L., Tobin R.L., Cho H.J., and Mehta N.L., 1990, “Sensitivity
Analysis Based Heuristic Algorithm for Mathematical Programs with
Variational Inequality Constraints,” Mathematical Programming, Vol.
48, pp. 265-284.
24. Goldstein A.A., 1964, “Convex programming in Hilbert space,”
Bulletin of the American Mathematical Society, Vol. 70, No. 5, pp.
709-710.
25. Harker P.T., and Pang J.S., 1990, “Finite Dimensional Variational
Inequality and Nonlinear Complementarity Problems : A Survey of
the Theory, Algorithms and Applications,” Mathmatical
Programming, Vol. 48(B), pp. 161-220.
26. Harker P.T., and Choi S.C., 1987, A Penalty Function Approach for
Mathematical Programs with Variational Inequality Constraints,
Decision Science Working Paper 87-09-08, University of
Pennsylvania.
27. Hooke R., and Jeeves T. A., 1961, “Direct Search Solution of
Numerical and Statistical Problem”, Journal of the Association for
Computing Machinery, Vol. 8, pp. 212-229.
28. Kolstad C.D., 1985, A Review of the Literature on Bilevel
Mathematical Programming, Los Alamos National Laboratory Report,
LA-10284-MS.
29. LeBlanc L.J., and Boyce D.F., 1986, “A Bilevel Programming
Algorithm for Exact Solution of the Network Design Problem with
User-Optimal Flows,” Transportation Research, Vol. 20B, No. 3,
pp.259-265.
30. Magnanti T.L., and Wong R.T., 1984, “Network Design and
Transportation Planning : Models and Algorithms,” Transportation
Science, Vol. 18, No. 1, pp. 1-55.
31. Maher M.J., and Akcelik R., 1975, “The Re-Distributional Effects of
a Traffic Control Policy,” Traffic Engineering and Control, Vol. 16,
No. 9, pp. 383-385.
32. Marcotte P., 1986, “Network Design Problem with Congestion
Effects : A Case of Bilevel Programming,” Mathematical
Programming, Vol. 34, pp. 142-162.
33. Marcotte P., 1988, “A Note on Bilevel Programming Algorithm by
LeBlanc and Boyce,” Transportation Research, Vol. 22B, No. 3, pp.
233-237.
34. Miller T.C., Tobin R.L., and Friesz T.L, 1991, “Stackelberg Games
on a Network with Cournot-Nash Oligopolistic Competitors,” Journal
of Regional Science, Vol. 31, No. 4, pp. 435-454.
35. Luenberger D.G., 1984, Linear and Nonlinear Programming,
Addison-Wesley Publishing Company, Inc, America.
36. Nagurney A., 1993, Network Economics : A Variational Inequality
Approach, Kluwer Academic.
37. Powell M. J., 1964, “An Efficient Method for Finding the Minimum
of a Function of Several Variales without Using Derivatives”, Brit.
Computer Journal, Vol. 9, pp. 155-162.
38. Sheffi Y., 1984, Urban Transportation Networks : Equilibrium
Analysis with Mathematical Programming Methods, Prentical-Hall.
39. Steenbrink P.A., 1974, Optimization of Transport Network, John
Wiley, New York.
40. Suwansirikul C., Friesz T.L., and Tobin R.L., 1987, “Equilibrium
Decomposed Optimization : A Heuristic for the Continuous
Equilibrium Network Design Problem,” Transportation Science, Vol.
21, pp. 254-263.
41. Tan H.N., Gershwin S.B., and Athans M., 1979, Hybrid Optimization
in Urban Transport Networks, Massachusetts Institute of Technology,
Massachusetts.
42. Tobin R.L., 1986, “Sensitivity Analysis for Variational Inequalities,”
Journal of Optimization Theory and Applications, Vol. 48, No. 1, pp.
191-204.
43. Tobin R.L. and Friesz T.L., 1988, “Sensitivity Analysis for
Equilibrium Network Flow,” Transportation Science, Vol. 22, No. 4,
pp. 242-250.