| 研究生: |
高子勛 Tzu-Hsun Kao |
|---|---|
| 論文名稱: |
電離層日食緯度效應 Latitudinal Ionospheric Solar Eclipse Effects |
| 指導教授: |
劉正彥
Jann-Yenq Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 日食 、電離層 、離子/電子濃度 、離子/電子溫度 、離子速度 |
| 外文關鍵詞: | Solar Eclispe, Ionosphere, Ion/Electron Density, Ion/Electron Temperature, Ion Velocity |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分析2020年6月21日的低緯度日環食、2021年6月10日的北極日食和2021年12月4日的南極日食三個日食事件之電離層響應。三顆衛星,FORMOSAT-7/COSMIC-2(F7/C2)、Ionospheric Connection Explorer(ICON)和Swarm衛星被用來觀察2020年6月21日的日環食事件。然而,只有Swarm可用來觀察2021年6月10日的北極日食和2021年12月4日的南極日食事件。F7/C2和ICON配備了離子速度儀(Ion velocity meter),量測離子溫度、密度和上移速度。Swarm則使用其電場儀器(Electric Field Instrument)來記錄電子溫度和密度。結果顯示,食甚後,離子和電子溫度下降了約100-1100 K。在月球的陰影下,離子和電子密度明顯減少30%至50%,而在初窺前則有增加約50%。此外,食甚附近,離子垂直地表向上速度呈減少之趨勢,然而卻在初虧附近則增加。值得注意的是,這些變化在緯度位置上具有明顯差異,例如:高緯度地區的電子溫度減少更為明顯,而低緯度地區的電子密度減少則更為明顯。日食當天之月相為新月,由於其潮汐力效應,導致赤道異常區(Equatorial Ionization Anomaly)密度顯著地增加。
Responses of ionospheric plasma to three solar eclipse events, the 21 June 2020 annular solar eclipse in low latitudes, the 10 June 2021 solar eclipse over the north pole, and the 04 December 2021 solar eclipse over the south pole, are studied. In-situ measurements of the ion/electron temperature, density, and ion upward velocity probed by the ion velocity meter (IVM) onboard FORMOSAT-7/COSMIC-2 (F7/C2) and Ionospheric Connection Explorer (ICON), and the electric field instrument (EFI) onboard Swarm satellites are used to observe ionospheric solar eclipse effects at various latitudes. The ion and electron temperatures decrease by about 100-1100 K during the maximum obscuration. The ion/electron density experience significant decreases of about -30--50% under the Moon's shadow, and however, yield enhancements around +50% around the first contact. It can be found that the ion upward velocity decreases around the maximum obscuration while increasing at the first contact. Notably, these variations exhibit differences across latitudinal locations, such as more pronounced electron temperature decreases in higher latitudes, and however, obvious electron density reduces more in the lower latitudes. Since solar eclipses occur on the new Moon day, the lunar tide results in the equatorial ionization anomaly symmetrically enhance.
Allen, J.H. (1982). Some commonly used magnetic activity indices: Their derivation, meaning and use. Proceedings of a Workshop on Satellite Drag, 114-134. https://www.ngdc.noaa.gov/stp/solar/magindices.html
Barad, R. K., Sripathi, S., & England, S. L. (2022). Multi‐Instrument Observations of the Ionospheric Response to the 26 December 2019 Solar Eclipse Over Indian and Southeast Asian Longitudes. Journal of Geophysical Research: Space Physics, 127(9), art. e2022JA030330, doi: 10.1029/2022JA030330.
Baran, L. W., Ephishov, I. I., Shagimuratov, I. I., Ivanov, V. P., & Lagovsky, A. F. (2003). The response of the ionospheric total electron content to the solar eclipse on August 11, 1999. Advances in Space Research, 31(4), 989-994, doi: 10.1016/S0273-1177(02)00885-2.
Bartels, J. (1949). The standardized index, Ks, and the planetary index, Kp. IATME Bulletin 12B, 97-120, International Union of Geodesy and Geophysics http://isgi.unistra.fr/IAGABulletins/IATME_Bulletin_12b_Herbert_Weisman_Bartels_1949.pdf
Bartels, J. (2013). The geomagnetic measures for the time-variations of solar corpuscular radiation, described for use in correlation studies in other geophysical fields. Geomagnetism, 4, 227-236, doi: 10.1016/B978-1-4832-1304-0.50007-5.
Carlos, J., Díaz, M. A., Bravo, M., & Báez, J. C. (2022). Ionospheric Behavior during the 10 June 2021 Annular Solar Eclipse and Its Impact on GNSS Precise Point Positioning. Remote Sensing, 14(13), 3119, doi: 10.3390/rs14133119.
Chen, G., Zhao, Z., Yang, G., Zhou, C., Yao, M., Li, T., Huang, S., & Li, N. (2010). Enhancement and HF Doppler observations of sporadic‐E during the solar eclipse of 22 July 2009. Journal of Geophysical Research: Space Physics, 115(A9), doi: 10.1029/2010JA015530.
Chen, S. P., Lin, C., Rajesh, P. K., Liu, J. Y., Eastes, R., Chou, M. Y., & Choi, J. M. (2021). Near real‐time global plasma irregularity monitoring by FORMOSAT‐7/COSMIC‐2. Journal of Geophysical Research: Space Physics, 126(1), art. e2020JA028339, doi: 10.3390/rs15061663.
Chernogor, L. F., Mylovanova, L. I., Mylovanov, Y. B., Tsymbal, A. M., & Luo, Y. (2021). Effects from the June 10, 2021 solar eclipse in the ionosphere over Kharkiv: results from ionosonde measurements. Visnyk of V.N. Karazin Kharkiv National University, Series “Radio Physics and Electronics”, (35), 60-78, doi: 10.26565/2311-0872-2021-35-06.
Choi, J. M., Lin, C. C. H., Panthalingal Krishanunni, R., Park, J., Kwak, Y. S., Chen, S. P., Lin, J.T., Chang, & M.T. (2023). Comparisons of in situ ionospheric density using ion velocity meters onboard FORMOSAT-7/COSMIC-2 and ICON missions. Earth, Planets and Space, 75(1), 15, doi: 10.1186/s40623-022-01759-3.
Cook, K., Fong, C. J., Wenkel, M. J., Wilczynski, P., Yen, N., & Chang, G. S. (2013, March). FORMOSAT-7/COSMIC-2 GNSS radio occultation constellation mission for global weather monitoring. In 2013 IEEE Aerospace Conference (pp. 1-8). IEEE. https://ieeexplore.ieee.org/document/6497317
Coster, A. J., Goncharenko, L., Zhang, S. R., Erickson, P. J., Rideout, W., & Vierinen, J. (2017). GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophysical Research Letters, 44(24), 12041-12048, doi: 10.1002/2017GL075774.
da Silva Curiel, A., Lambert, M., Liddle, D., Sweeting, S.M., Chu, C.H., Fong, C.J., & Chang, G.S. (2013, August), Introduction to FORMOSAT-7/COSMIC-2 mission. In 27th Small Satellite Conference. Utah State University Logan, Utah. https://digitalcommons.usu.edu/smallsat/2013/all2013/83/
Dang, T., Lei, J., Wang, W., Yan, M., Ren, D., & Huang, F. (2020). Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse. Earth and Planetary Physics, 4(3), 231-237, doi: 10.26464/epp2020032.
Davies, K. (1990). Ionospheric radio (No. 31). IET.
Davis, T. N., & Sugiura, M. (1966). Auroral electrojet activity index AE and its universal time variations. Journal of Geophysical Research, 71(3), 785-801, doi: 10.1029/JZ071i003p00785.
Eccles, J. V., St. Maurice, J. P., & Schunk, R. W. (2015). Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low‐latitude ionosphere. Journal of Geophysical Research: Space Physics, 120(6), 4950-4970, doi: 10.1002/2014JA020664.
Evans, J. V. (1965a). An F region eclipse. Journal of Geophysical Research, 70(1), 131-142, doi:10.1029/jz070i001p00131.
Evans, J. V. (1965b). On the behavior of ƒ0F2 during solar eclipses. Journal of Geophysical Research, 70(3), 733-738, doi: 10.1029/JZ070i003p00733.
Farrag, A., Othman, S., Mahmoud, T., & ELRaffiei, A. Y. (2019). Satellite swarm survey and new conceptual design for Earth observation applications. The Egyptian Journal of Remote Sensing and Space Science, 24(1), 47-54, doi: 10.1016/j.ejrs.2019.12.003.
Fong, C.J., Chu, C.H., Lin, C.L., & Curiel, A.D.S. (2019). Toward the most accurate thermometer in space: FORMOSAT-7/COSMIC-2 constellation. IEEE Aerospace and Electronic Systems Magazine. 34(8), 12-20, doi: 10.1109/MAES.2019.2924133.
Friis-Christensen, E., Lühr, H., Knudsen, D., & Haagmans, R. (2006). Swarm – An Earth Observation Mission investigating Geospace. Advances in Space Research, 41(1), 210-216, doi: 10.1016/j.asr.2006.10.008.
Goncharenko, L. P., Erickson, P. J., Zhang, S. R., Galkin, I., Coster, A. J., & Jonah, O. F. (2018). Ionospheric response to the solar eclipse of 21 August 2017 in Millstone Hill (42N) observations. Geophysical Research Letters, 45(10), 4601-4609, doi: 10.1029/2018GL077334.
Grigorenko, E. I., Lyashenko, M. V., & Chernogor, L. F. (2008). Effects of the solar eclipse of March 29, 2006, in the ionosphere and atmosphere. Geomagnetism and Aeronomy, 48, 337-351, doi: 10.1134/S0016793208030092.
Hairston, M. R., Mrak, S., Coley, W. R., Burrell, A., Holt, B., Perdue, M., Depew, M., & Power, R. (2018). Topside ionospheric electron temperature observations of the 21 August 2017 eclipse by DMSP spacecraft. Geophysical Research Letters, 45(15), 7242-7247, doi: 10.1029/2018GL077381.
Heelis, R. A., Stoneback, R. A., Perdue, M. D., Depew, M. D., Morgan, W. A. et al. (2017). Ion Velocity Measurements for the Ionospheric Connections Explorer. Space Science Reviews, 212(1), 615-629, doi: 10.1007/s11214-017-0383-3.
Huang, C. R., Liu, C. H., Yeh, K. C., Lin, K. H., Tsai, W. H., Yeh, H. C., & Liu, J. Y. (1999). A study of tomographically reconstructed ionospheric images during a solar eclipse. Journal of geophysical research: space physics, 104(A1), 79-94, doi: 10.1029/98JA02531.
Huang, F., Li, Q., Shen, X., Xiong, C., Yan, R., Zhang, S. R., et al. (2020). Ionospheric responses at low latitudes to the annular solar eclipse on 21 June 2020. Journal of geophysical research: space physics, 125(10), art. e2020JA028483, doi: 10.1029/2020JA028483.
Immel, T. J., England, S. L., Mende, S. B., Heelis, R. A., Englert, C. R., Edelstein, J., et al. (2018). The ionospheric connection explorer mission: Mission goals and design. Space Science Reviews, 214(13), 1-36, doi: 10.1007/s11214-017-0449-2.
Jakowski, N., Stankov, S. M., Wilken, V., Borries, C., Altadill, D., Chum, J., et al. (2008). Ionospheric behavior over Europe during the solar eclipse of 3 October 2005. Journal of Atmospheric and Solar-Terrestrial Physics, 70(6), 836-853, doi: 10.1016/j.jastp.2007.02.016.
Jonah, O. F., Goncharenko, L., Erickson, P. J., Zhang, S., Coster, A., Chau, J. L., et al. (2020). Anomalous behavior of the equatorial ionization anomaly during the 2 July 2019 solar eclipse. Journal of Geophysical Research: Space Physics, 125(9), art. e2020JA027909, doi: 10.1029/2020JA027909.
Jordanova, V. K. (2020). Ring current decay. Ring Current Investigations (pp. 181-223). Elsevier.
Kakinami, Y., Watanabe, S., Liu, J. Y., & Balan, N. (2011). Correlation between electron density and temperature in the topside ionosphere. Journal of Geophysical Research: Space Physics, 116(A12), doi: 10.1029/2011JA016905.
Knudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R., Wahlund, J. E.et al. (2017). Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. Journal of Geophysical Research: Space Physics, 122(2), 2655-2673, doi: 10.1002/2016JA022571.
Le, H., Liu, L., Yue, X., Wan, W., & Ning, B. (2009). Latitudinal dependence of the ionospheric response to solar eclipses. Journal of Geophysical Research: Space Physics, 114(A7). doi: 10.1029/2009JA014072.
Le, H., Liu, L., Ren, Z., Chen, Y., & Zhang, H. (2020). Effects of the 21 June 2020 solar eclipse on conjugate hemispheres: A modeling study. Journal of Geophysical Research: Space Physics, 125(11), art. e2020JA028344, doi: 10.1029/2020JA028344.
Liu, J. Y., Tsai, H. F., Tsai, L. C., & Chen, M. Q. (1999). Ionospheric total electron content observed during the 24 October 1995 solar eclipse. Advances in space research, 24(11), 1495-1498, doi: 10.1016/S0273-1177(99)00713-9.
Liu, J. Y., Yang, S. S., Rajesh, P. K., Sun, Y. Y., Chum, J., Pan, C. J., et al. (2019). Ionospheric response to the 21 May 2012 annular solar eclipse over Taiwan. Journal of Geophysical Research: Space Physics, 124(5), 3623-3636, doi: 10.1029/2018JA025928.
Liu, J. Y., Wu, T. Y., Sun, Y. Y., Pedatella, N. M., Lin, C. Y., Chang, L. C., et al. (2020). Lunar tide effects on ionospheric solar eclipse signatures: The August 21, 2017 event as an example. Journal of Geophysical Research: Space Physics, 125(12), art. e2020JA028472, doi: 10.1029/2020JA028472.
Lomidze, L., Knudsen, D. J., Burchill, J., Kouznetsov, A., & Buchert, S. C. (2018). Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Science, 53(1), 15-36, doi: 10.1002/2017RS006415.
Maji, S. K., Chakrabarti, S. K., Sanki, D., & Pal, S. (2017). Topside ionospheric effects of the annular solar eclipse of 15th January 2010 as observed by DEMETER satellite. Journal of Atmospheric and Solar-Terrestrial Physics, 159, 1-6, doi: 10.1016/j.jastp.2017.04.012.
Mayaud, P. N. (1978). The annual and daily variations of the Dst index. Geophysical Journal International, 55(1), 193-201, doi: 10.1111/j.1365-246X.1978.tb04757.x
Menard, Y., Bock, R., Neri, E., & Haagmans, R. (2006, May). Swarm Mission Concept. In the First Swarm International Science Meeting, Nantes, France. https://ftp.spacecenter.dk/data/magnetic-satellites/Swarm/SCARF/1st_Swarm_Intl_Sci_Mtg_Nantes/papers/03-Menard-Pres.pdf
Momani, M. A., Yatim, B., & Mohd Ali, M. A. (2010). Ionospheric and geomagnetic response to the total solar eclipse on 1 August 2008 over Northern Hemisphere. Journal of Geophysical Research: Space Physics, 115(A8), doi: 10.1029/2009JA014999.
Pignalberi, A., Giannattasio, F., Truhlik, V., Coco, I., Pezzopane, M., Consolini, G., et al. (2021). On the electron temperature in the topside ionosphere as seen by swarm satellites, incoherent scatter radars, and the international reference ionosphere model. Remote Sensing, 13(20), 4077, doi: 10.3390/rs13204077.
Pitout, F., Blelly, P. L., & Alcaydé, D. (2013). High-latitude ionospheric response to the solar eclipse of 1 August 2008: EISCAT observations and TRANSCAR simulation. Journal of Atmospheric and Solar-Terrestrial Physics, 105-106, 336-349, doi: 10.1016/j.jastp.2013.02.004.
Richmond, A. D., Fang, T. W., & Maute, A. (2015). Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions. Journal of Geophysical Research: Space Physics, 120(3), 2118-2132, doi: 10.1002/2014JA020934.
Richmond, A. D., & Fang, T. W. (2015). Electrodynamics of the equatorial evening ionosphere: 2. Conductivity influences on convection, current, and electrodynamic energy flow. Journal of Geophysical Research: Space Physics, 120(3), 2133-2147, doi: 10.1002/2014JA020935.
Rishbeth, H. (1968). Solar eclipses and ionospheric theory. Space Science Reviews, 8(4), 543-554, doi: 10.1007/BF00175006.
Schunk, R. W., & Nagy, A. F. (1978). Electron temperatures in the F region of the ionosphere: Theory and observations. Reviews of Geophysics, 16(3), 355-399, doi: 10.1029/RG016i003p00355.
Sun, W., & Akasofu, I. (2000). On the formation of the storm-time ring current belt. Journal of Geophysical Research: Space Physics, 105(A3), 5411-5418, doi: 10.1029/1999JA000339.
Sun, Y. Y., Chen, C. H., Su, X., Wang, J., Yu, T., Xu, H. R., & Liu, J. Y. (2023) Occurrence of nighttime irregularities and their scale evolution in the ionosphere due to the solar eclipse over East Asia on 21 June 2020. Journal of Geophysical Research: Space Physics, 128(2), art. e2022JA030936, doi: 10.1029/2022JA030936.
Tapping, K. F. (2013). The 10.7 cm solar radio flux (F10. 7). Space weather, 11(7), 394-406, doi: 10.1002/swe.20064.
Tomás, A. T., Lühr, H., Förster, M., Rentz, S., & Rother, M. (2007). Observations of the low‐latitude solar eclipse on 8 April 2005 by CHAMP. Journal of geophysical research: space physics, 112(A6), doi: 10.1029/2006JA012168.
Tsai, H. F., & Liu, J. Y. (1999). Ionospheric total electron content response to solar eclipses. Journal of geophysical research: space physics, 104(A6), 12657-12668, doi: 10.1029/1999JA900001.
Vennerstrøm, S., Friis-Christensen, E., Troshichev, O. A., & Andersen, V. G. (1991). Comparison between the polar cap index, PC, and the auroral electrojet indices AE, AL, and AU. Journal of Geophysical Research: Space Physics, 96(A1), 101-113, doi: 10.1029/90JA01975.
Wang, J., Sun, Y. Y., Yu, T., Wang, Y., Mao, T., Yang, H., et al. (2022). Convergence effects on the ionosphere during and after the annular solar eclipse on 21 June 2020. Journal of Geophysical Research: Space Physics, 127(9), art. e2022JA030471, doi: 10.1029/2022JA030471.
Wang, X., Berthelier, J. J., & Lebreton, J. P. (2010). Ionosphere variations at 700 km altitude observed by the DEMETER satellite during the 29 March 2006 solar eclipse. Journal of Geophysical Research: Space Physics, 115(A11), doi: 10.1029/2010JA015497.
Wilcox, R. R. (2010). Fundamentals of modern statistical methods: Substantially improving power and accuracy (Vol. 249). New York: Springer.
Wu, T. Y., Liu, J. Y., Lin, C. Y., & Chang, L. C. (2020). Response of ionospheric equatorial ionization crests to lunar phase. Geophysical Research Letters, 47(7), art. e2019GL086862, doi: 10.1029/2019GL086862.
Wu, T. Y., Liu, J. Y., Chang, L. C., Lin, C. Y., & Chiu, Y. C. (2021). Equatorial ionization anomaly response to lunar phase and stratospheric sudden warming. Scientific Reports, 11(1), 1-9, doi: 10.1038/s41598-021-94326-x.
Yeh, K. C., Yu, D. C., Lin, K. H., Huang, C. R., Tsai, W. H., Liu, J. Y., et al. (1997). Ionospheric response to a solar eclipse in the equatorial anomaly region. Terr. Atmos. Oceanic Sci, 8(2), 165-178, doi: 10.3319/TAO.1997.8.2.165(ASEE).
Zhang, R., Le, H., Li, W., Ma, H., Yang, Y., Huang, H., et al. (2020). Multiple technique observations of the ionospheric responses to the 21 June 2020 solar eclipse. Journal of geophysical research: space physics, 125(12), art. e2020JA028450, doi: 10.1029/2020JA028450.