跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李韻柔
Yun-Jou Li
論文名稱: 氮化物量子井結合表面增強拉曼光譜用於類胡蘿蔔素的量化檢測
Quantification of Beta-Carotene Using Surface-Enhanced Raman Spectroscopy Based on Nitride Quantum Wells
指導教授: 賴昆佑
Kun-Yu Lai
簡汎清
Fan-Ching Chien
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 65
中文關鍵詞: 氮化物表面增強拉曼散射類胡蔔素量子井
外文關鍵詞: Nitride Quantum Wells, SERS, Beta-Carotene, Quantum Wells
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用表面增強拉曼散射技術(Surface-enhanced Raman Scattering, SERS)來量化人體血漿中的抗氧化劑——類胡蘿蔔素。實驗中,透過有機金屬化學氣相沉積法(Metal-Organic Chemical Vapor Deposition, MOCVD)在藍寶石基板上生長氮化銦鎵/氮化鎵(InGaN/GaN)量子井,將高濃度的電荷侷限在SERS晶片表面,並藉由晶片表面的鋁金屬與InGaN量子井之間形成的電漿耦合(plasmonic coupling),大幅增加SERS的有效範圍。
      相比於傳統用於類胡蘿蔔素量化的高效液相層析法(High-Performance Liquid Chromatography, HPLC),SERS 具備更簡易、直觀且快速的操作與量測方式。本技術僅需將10 μL 的血漿檢體滴在晶片表面,並於 30 °C、40% 相對濕度下乾燥約 10 分鐘,即可進行光譜量測,從抽血到完成量測分析,可於 30 分鐘內完成。
      實驗選用488奈米波長的雷射光源,因該波長在類胡蘿蔔素的吸光範圍內,能藉由共振拉曼(resonance Raman)增強類胡蘿蔔素的光譜強度。結果顯示,將類胡蘿蔔素的乙醇溶液與人體血漿均勻混合後,所得的SERS訊號強度與胡蘿蔔素濃度呈線性相關。因此,我們可透過SERS光譜推算血漿中的類胡蘿蔔素濃度,為胡蘿蔔素的檢測技術提供一種快速、準確的新選擇。


    This study aims to quantify β-carotene, a key antioxidant present in human plasma, using surface-enhanced Raman scattering (SERS) technology. In this work, InGaN/GaN quantum wells were grown on sapphire substrates via metal-organic chemical vapor deposition (MOCVD) to enhance electron confinement and increase the surface charge density of the SERS chip. To further boost Raman signals, the substrate surface was coated with nanostructured aluminum, forming densified and expanded hot spots.
    Compared with high-performance liquid chromatography (HPLC), the conventional technique for β-carotene analysis, the SERS method is simpler and faster. This is because SERS requires no solvents, but only a plasma droplet of 10 μL, which is dried at 30 °C and 40% humidity for 10 minutes. The whole process, from preparation to data collection, can be completed in 30 minutes.
    A 488-nm laser was used to excite the strong resonance Raman spectra of β-carotene, as the blue light is within the absorption range of β-carotene. SERS spectra of the plasma diluted in ethanol show three major peaks at 1525, 1160 and 1010 cm-1, whose intensities are linearly correlated with β-carotene concentration. The result allows us to quantify the level of β-carotene in plasma. This study presents a new approach for fast and sensitive analysis of the antioxidant in human blood.

    論文摘要 i Abstract ii 致謝 iii 目錄 iv 縮寫詞表 vi 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 氮化鎵作為固態基板的優勢(QW) 1 1.2 表面增強拉曼散射(SERS)的生醫應用 2 1.3 類胡蘿蔔素的發現與檢測 3 1.4 研究動機 6 第二章 實驗原理、製程與儀器 7 2.1 有機金屬沉積法(MOCVD)-量子井(QW) 8 2.2 金屬薄膜 11 2.3 表面奈米結構 13 2.4 類胡蘿蔔素樣品的配置 15 2.5 SERS原理與量測 17 2.5.1 電磁增強機制 18 2.5.2 化學增強機制 22 2.5.3 SERS量測與儀器 25 第三章 結果分析與討論 30 3.1 量子井共振效應 30 3.2 臨床樣品分析 34 3.3 類胡蘿蔔素溶液校正曲線 36 3.4 臨床樣品量化估測 44 第四章 結論與未來展望 48 4.1 結論 48 4.2 未來展望 50 第五章 參考文獻 51

    [1] Lyu, N., Hassanzadeh‑Barforoushi, A., Rey Gomez, L. M., Zhang, W. & Wang, Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. Nano Converg. 11, 22 (2024).

    [2] Feng, S. et al. Nasopharyngeal cancer detection based on blood plasma surface‑enhanced Raman spectroscopy and multivariate analysis. Biosens. Bioelectron. 25, 2414–2419 (2010).

    [3] Alpha‑Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029–1035 (1994).

    [4] Böhm V et al. From carotenoid intake to carotenoid blood and tissue concentrations – implications for dietary intake recommendations. Nutr Rev. 79, 544-573 (2021)

    [5] Talwar, D., Ha, T. K., Cooney, J., Brownlee, C. & O’Reilly, D. S. J. A routine method for the simultaneous measurement of retinol, α‑tocopherol and five carotenoids in human plasma by reverse phase HPLC. Clin. Chim. Acta 270, 85–100 (1998).

    [6] Zhao, F. Y. et al. Catching single molecules with plasmonic InGaN quantum dots. Adv. Opt. Mater. 11, 2300431 (2023).

    [7] Mosca, S., Conti, C., Stone, N. & Matousek, P. Spatially offset Raman spectroscopy. Nat. Rev. Methods Primers 1, 21 (2021)

    [8] Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166(1974)

    [9] Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977).

    [10] Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).

    [11] Dyson, F. J. Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85, 631–633 (1952).

    [12] Cong, S., Liu, X., Jiang, Y., Zhang, W. & Zhao, Z. Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. The Innovation 1, 100051 (2020).

    [13] 賴天珩, 盧奕翔, 郭子豪, 簡易型表面電將共振感測器.台北科技大學(2014).
    20250720取自 https://eo.ntut.edu.tw/var/file/69/1069/img/2034/276754874.pdf

    [14] Otto, A. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 36, 497–510 (2005).

    [15] Lu, L., Shi, L., Secor, J. & Alfano, R. R. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state. J. Photochem. Photobiol. B 179, 18–22 (2018).

    [16] 賴昆佑博士,《工業材料雜誌》433期 (2023),20250720取自https://www.materialsnet.com.tw/DocView.aspx?id=51698

    [17] Beck, M. et al. Evaluation of the energetic position of the lowest excited singlet state of β-carotene by NEXAFS and photoemission spectroscopy. Biochim. Biophys. Acta 1506, 260–267 (2001).

    [18] Rouaud, M. Probability, Statistics and Estimation: Propagation of Uncertainties in Experimental Measurement. (Creative Commons, 2013).
    http://www.incertitudes.fr/book.pdf

    QR CODE
    :::