跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅志宏
Chih-Hung Lo
論文名稱: 具負載與間距偵測之非接觸式供電系統
Non-Contact Power System with Load and Gap Detection
指導教授: 徐國鎧
Kuo-Kai Shyu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 83
中文關鍵詞: 負載訊號線圈間距訊號線圈半橋式串連諧振電路非接觸式供電系統
外文關鍵詞: gap signal coil, load signal coil, non-contact power system, half-bridge series resonant circuit
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文建立了一個具負載與間距偵測之非接觸式供電系統,利用諧振的方式將能量透過變壓器耦合傳送至負載端,為了系統的穩定與性能的控制,負載與間距變化情形是必須曉得的,由於非接觸式結構上的分離,要確切的瞭解目前負載與間距狀況並不容易。本文係針對非接觸式供電系統之負載與間距變化情形提出一種偵測機制,設計一個具有能量與訊號同時傳輸的非接觸式供電系統,利用電磁耦合的原理,將能量線圈與訊號線圈透過一、二次側鐵心作傳輸,在傳遞能量的同時運用鐵心本身耦合的物理特性,將訊號取出傳送至微控制器作控制。在能量傳輸部分,使用半橋式串連諧振電路,將操作頻率操作在諧振頻率之上,使功率開關達到零電壓切換,以減少切換損失。在訊號傳輸部分,主要是從一、二次側鐵心上設計負載訊號線圈與間距訊號線圈,運用鐵心本身磁場大小與磁場方向的分佈,再經由本文所設計之負載與間距偵測電路,將訊號迴授至一次側微控制器,以控制整個非接觸式供電系統。實驗證實,本文所提出具負載與間距偵測之非接觸式供電系統,負載訊號線圈與輸出負載有關,間距訊號線圈與鐵心間距有關。隨著負載與間距的不同,輸出電壓可由一次側操作頻率來控制達到二次側輸出穩壓的效果。非接觸式供電系統可發展到電動刮鬍刀、手機、電動車、人工心臟等應用。


    In this thesis, we design a non-contact power system with load and gap detection. The primary uses the resonant way to transfer energy to the load by transformer coupling. In order to stabilize the system output and performance, it has to detect the core gap and load. Unfortunately, it is not easy to realize due to the separation of the non-contact structure. This thesis proposes a new detective mechanism to detect the variations of load and gap in non-contact power system. Based on electromagnetic theory, we design a non-contact power system, which is able to transfer energy to the secondary and to feedback energy and signal transfer from the secondary. Moreover, it also uses core self-coupling effect to transfer the energy and signal to the microcontroller through primary and secondary. In order to decrease the power transfer loss, we design a half-bridge series resonant circuit, operating at higher frequency than resonant frequency to achieve zero-voltage switch. In terms of signal transfer, we design a coil to detect both load and gap signals. Then, signals are fed back to the primary controller to control the whole non-contact power system. Experiment results show that: 1) the signal of load detect core is related to the load output and 2) the signal of gap detect core is related to the gap. It is easy to control the output voltage by adjusting the primary operating frequency under variations of load and gap. This non-contact power system is applicable to electric shaver, cell phone, electric car, and artificial heart applications.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VII 表目錄 XIV 第一章 緒論 01 1.1研究動機 01 1.2研究背景 01 1.3研究目的與方法 02 1.4論文大綱 02 第二章 非接觸式供電技術之背景 04 2.1非接觸式與接觸式供電技術之差異 04 2.2非接觸式供電技術之發展 06 2.2.1非接觸式電路拓樸 06 2.2.2非接觸式鐵心形狀 08 2.2.3非接觸式控制方法 09 2.2.4非接觸式應用領域 10 2.3技術開發與設計考量 13 第三章 非接觸式供電系統架構與規劃 15 3.1系統架構 15 3.2輸入級單元 16 3.2.1電磁波干擾(Electro Magnetic Interference) 16 3.2.2突波吸收器與橋式整流器 17 3.2.3交流/直流轉換電路(輔助電源) 18 3.3功率級單元 20 3.3.1串聯諧振式轉換器 20 3.3.1.1時域響應(Time Response) 20 3.3.1.2頻域響應 (Frequency Response) 22 3.3.2半橋串聯諧振式轉換器 24 3.3.3串聯諧振式直流/交流轉換器 27 3.3.4功率開關之驅動電路 28 3.4輸出級單元 29 第四章 非接觸式供電系統負載與間距之偵測 31 4.1變壓器磁路定義 31 4.1.1磁動勢與磁位降 31 4.1.2磁場強度 32 4.1.3磁通與磁通密度 34 4.1.4磁阻 34 4.1.5磁路之歐姆定律 35 4.2變壓器磁路模型之建立 36 4.2.1雙埠網路法 36 4.2.2變壓器磁路模型之分析 39 4.2.3 EE型鐵心不同繞製方式之等效磁路模型 41 4.3非接觸式變壓器單元 43 4.3.1鐵心材質與線圈繞製方式 43 4.3.2能量與訊號的傳輸方式 45 4.3.3能量與訊號之分析 46 4.4等效磁路模擬 50 4.4.1負載偵測電路 52 4.4.2間距偵測電路 52 4.5迴授控制單元 53 4.5.1控制架構 54 4.5.2微控制器 54 4.6軟體流程規劃 55 第五章 實驗結果 63 5.1實驗結果I(一次側切換開關與諧振之波形) 63 5.2實驗結果II(一次側與二次側變壓器之波形)66 5.3實驗結果III(不同間距大小,負載偵測電壓對負載變化之波形)70 5.4實驗結果IV(不同間距大小,間距偵測電壓對負載變化之波形)70 5.5實驗結果V(負載訊號線圈與間距訊號線圈之波形)71 5.6實驗結果VI(一次側變頻控制二次側穩壓之波形)72 5.7實驗結果VII(實驗硬體電路圖與實驗結果討論)76 第六章 結論與未來展望 77 參考文獻 79 作者簡介 83

    [1] N.H. Kutkut and K.W. Klontz, “Design Considerations for Power Converters Supplying the SAE J-1773 Electric Vehicle Inductive Coupler,” Proc. of IEEE Applied Power Electronics Conference, vol. 2, pp.841-847, Feb. 1997.
    [2] H.J. Jiang and G. Maggetto, “Assessment of the Impact of Transformer Coupling Quality on Steady State Characteristics of Series Resonant Converters,” Proc. of IEEE Power Electronics Specialist Conference, vol. 2, pp.1186-1191, June 1997.
    [3] A. Ghahary and B. H. Cho, “Design of a Transcutaneous Energy Transmission System Using a Series Resonant Converter,” Proc. of IEEE Power Electronics Specialist Conference, pp.1-8, June 1990.
    [4] J.G. Hayes, J.T. Hall, M.C. Egan, and J.M.D. Murphy, “Full-Bridge, Series-Resonant Converter Supplying the SAE J-1773 Electric Vehicle Inductive Charging Interface,” Proc. of IEEE Power Electronics Specialist Conference, vol. 2, pp.1913-1918, June 1996.
    [5] D.O. Sullivan, M. Willers, M.G. Egan, J.G. Hayes, P.T. Nguyen, and C.P. Henze, “Power Factor Corrected Single Stage Inductive Charger for Electric Vehicle Batteries,” Proc. of IEEE Power Electronics Specialist Conference, vol. 1, pp.509-516, June 2000.
    [6] J.G. Hayes and M.G. Egan, “A Comparative Study of Phase-Shift Frequency and Hybrid Control of the Series Resonant Converter Supplying the Electric Vehicle Inductive Charging Interface,” Proc. of IEEE Applied Power Electronics Conference, vol. 1, pp.450-457, March 1999.
    [7] G. Hua, E.X. Yang, Y. Jiang, and F.C. Lee, “Novel Zero-Current-Transition PWM Converters,” IEEE Trans. Power Electronics, vol. 9, pp.601-606, Nov. 1994.
    [8] J. Hirai, T.W. Kim, and A. Kawamura, “Wireless Transmission of Power and Information and Information for Cableless Linear Motor Drive,” IEEE Trans. Power Electronics, vol. 15, pp.21-27, Jan. 2000.
    [9] Y. Hiraga, J. Hirai, A. Kawamura, K. Ishioka, Y. Kaku, and Y. Nitta, “Decentralized Control of Machines with the Use of Inductive Transmission of Power and Signal,” IEEE Industry Applications Society Annual Meeting, vol. 2, pp.875-881, Oct. 1994.
    [10] J. Hirai, T.W. Kim, and A. Kawamura, “Study on Crosstalk in Inductive Transmission of Power and Information,” IEEE Trans. Industrial Electronics, vol. 46, pp.1174-1182, Dec. 1999.
    [11] J. Hirai, T.W. Kim, and A. Kawamura, “Study on Intelligent Battery Charging Using Inductive Transmission of Power and Information,” IEEE Trans. Power Electronics, vol. 15, pp.335-345, March 2000.
    [12] T. Bieler, M. Perottet, V. Nguyen, and Y. Perriard, “Cotactless Power and Information Transmission,” IEEE Trans. Industry Applications, vol. 38, pp.1226-1272, Oct. 2002.
    [13] H. Sakamoto and K. Harada, “A novel circuit for non-contact charging through electro-magnetic coupling,” Proc. of IEEE Power Electronics Specialist Conference, pp.168-174, June. 1992.
    [14] Y. Jang and M.M. Jovanovic, “A Contactless Electrical Energy Transmission System for Protable-Telephone Battery Chargers,” IEEE Trans. Industrial Electronics, vol. 50, pp.520-527, June 2003.
    [15] R. Laouamer, M. Brunello, and J.P. Ferrieux, “A Multi-Resonant Converter for Non-Contact Charging with Electromagnetic Coupling,” Proc. of IEEE Applied Power Electronics Conference, vol. 1, pp.450-457, Nov. 1997.
    [16] H. Ayano, K. Yamamoto, N. Hino, and I. Yamato, “Highly efficient contactless electrical energy transmission system,” IEEE Trans. Industrial Electronics, pp. 1346-1369, Nov. 2002.
    [17] 趙恆生,“感應充電器耦合電路設計研究”,私立中原大學電機所碩士論文,民國90年6月
    [18] G. B. Joung and B. H. Cho, “An Energy Transmission System for an Artificial Heart Using Leakage Inductance Compensation of Transcutaneous Transformer,” IEEE Trans. Power Electronics, pp.1013-1022, Nov. 1998.
    [19] Y. Jang and M. M. Jovanovic, “A new soft-switched contactless battery charger with robust local controllers,” IEEE International Telecommunications Energy Conference, pp. 473-479, Oct. 2003.
    [20] X. Liu, P.W. Chen, and S.Y.R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” Proc. of IEEE Applied Power Electronics Conference, vol. 2, pp.1366-1372, March. 2005.
    [21] Y.S. Kong, E.S. Kim, I.G. Hwang, and H.K. Lee, “Highly-efficiency series-parallel resonant converter for the non-contact power supply,” Proc. of IEEE Applied Power Electronics Conference, vol. 2, pp.1496-1501, March 2005.
    [22] 工研院/能資所“非接觸式供電技術探討”,電力電子月刊第三卷第三期,民國94年5月。
    [23] Y.S. Lee, L.P. Wong, and D.K.W. Cheng, “Simulation and Design of Integrayed Magnetics for Power Converters,” Proc. of IEEE Trans. Magnetics, vol. 2, pp.1008-1018, March 2003.
    [24] 謝沐田編著,“高低頻變壓器設計”,全華科技圖書。
    [25] 粱適安編著,“交換式電源供應器之理論與實務設計”,全華科技圖書。
    [26] 莊明賢編著,“基本電學”,儒林圖書。
    [27] 江炫樟編著,“電力電子學”,第三版,全華科技圖書。
    [28] 陳政勇,“感應式能量與訊號傳輸之智慧型電源供應系統”,國立中央大學電機所碩士論文,民國94年7月。

    QR CODE
    :::