跳到主要內容

簡易檢索 / 詳目顯示

研究生: 盧凱興
Kai-Hsin LU
論文名稱: 二維各向同性諧振子與漸變折射率共振腔模態之比較
指導教授: 欒丕綱
Pi-Gang Luan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 共振腔諧振子漸變折射率
外文關鍵詞: Cavity, Oscillator, Gradient Refractive Index
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在環形漸變折射率共振腔中模態存在的樣貌與二維各向同性諧振子波函數的樣貌非常相似,因此本文將針對二維各向同性諧振子的Schrödinger方程式與漸變折射率共振腔中的電磁波方程式進行比較,並依此定義出折射率的型式,而後再藉由方程式係數的對應關係計算出預期之模態頻率,藉此來瞭解諧振子量子化能階與光波模態對應的關聯性。
    本論文討論二維各向同性諧振子的徑向量子數與角動量量子數與模態和品質因子的關係,並比較以層狀結構或者環形光子晶體所構成的等效折射率共振腔與原來的漸變折射率共振腔之結果的差異。模擬使用COMSOL 3.5a套裝軟體。當以諧振子模型計算出參考頻率後,即利用COMSOL模擬軟體對附近的頻率進行掃描計算以確定模態所在之正確頻率位置。本文中同時對E-Polarization及H-Polarization兩種偏振光進行分析,我們發現此兩種偏振光的模態由於方程式的差異對於諧振子模型的預測值有不同的偏離趨勢。


    The mode patterns of electromagnetic fields in a circular gradient index resonator are similar to that of the eigen-wavefunctions of the 2-D isotropic harmonic oscillator system. In this thesis, we define the gradient index of the circular resonator according to the parabolic potential energy in the 2-D isotropic harmonic oscillator system and we compare the mode patterns with the corresponding eigensolutions of this reference Schrödinger equation. We derived the one-to-one correspondence between these two systems and extracted the reference mode frequencies from the energy spectrum of the oscillator system. We also replace the gradient index cavities by layered structures or circular photonic crystals whose local effective indexes are the same as the original gradient index cavities and compare their results. In the case of the 2-D isotropic harmonic oscillator, there are two quantum numbers to characterize the eigensolution, and we use COMSOL 3.5a to simulate mode patterns in a finite sized resonator under the influence of varying these two quantum numbers and changing the polarizations. Based on our numerical results, the relationships between the circular gradient index resonator system and 2-D isotropic harmonic oscillator system are revealed. We find that for TE and TM modes the frequency deviations from the reference frequencies of the modes have opposite tendencies because they satisfy different wave equations.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 光子晶體簡介 1 1-2 光子晶體的特性 1 1-3 變換光學 3 1-3-1 隱形斗篷 6 1-3-2 光學黑洞 7 1-4 變換光學與共振腔 9 第二章 共振腔 10 2-1 品質因子(Quality factor) 10 2-2 光子晶體共振腔 12 2-3 環型共振腔 14 2-4 二維各向同性諧振子與電磁波方程式 15 2-4-1 二維各向同性諧振子 15 2-4-2 Maxwell’s Equations與電磁波方程式 17 2-4-3 二維各向同性諧振子與波動方程式之對應 20 第三章 參數設定及研究架構 21 3-1 COMSOL模擬設定 21 3-2 漸變折射率結構設計 23 3-3 等效折射率 24 3-4 等效折射率結構的設計方式 25 3-4-1 光子晶體等效方式 25 3-4-2 多層膜式等效 27 第四章 模擬分析與結果 28 4-1 二維各向同性諧振子與漸變折射率共振腔 28 4-1-1 E-Polarization與諧振子 30 4-1-2 H-Polarization與諧振子 33 4-1-3 模態之頻率偏移的討論 35 4-2 入射光波長與結構尺度關係 37 4-3 簡併態(Degeneracy)的討論 40 4-4 等效折射率之模擬 47 4-5 等效折射率結構之設計 50 第五章 結論與未來展望 55 參考文獻 56

    參考文獻
    〔1〕 欒丕綱、陳啟昌,光子晶體,二版,五南圖書出版股份有限公司,台北市,西元2010年10月。
    〔2〕 John D. Joannopoulos, Pierre R. Villeneuve and Shanhui Fan, "Photonic crystals:putting a new twist on light", Nature, Vol. 386, pp. 143 - 149, 13 March 1997.
    〔3〕 Thomas F. Krauss, “Photonic Crystals For Integrated Optics”, AIP Conf. Proc. 560, pp. 89-98, 2-14 July 2000.
    〔4〕 A. J. Ward and J. B. Pendry, , “Refraction and geometry in Maxwell's equations”, Journal of Modern Optics, Vol. 43, NO. 4, pp. 773-793, 1996.
    〔5〕 J. B. Pendry, D. Schurig and D. R. Smith, “Controlling Electromagnetic Fields”, SCIENCE, Vol 323, pp. 1780-1782, 23 June 2006.
    〔6〕 D. Schurig, J. B. Pendry and D. R. Smith, “Calculation of material properties and ray tracing in transformation media”, OPTICS EXPRESS, Vol. 14, No. 21, 16 October 2006.
    〔7〕 Ulf Leonhardt1 and Thomas G. Philbin, "Transformation Optics and the Geometry of Light", Prog. Optics, 53, pp. 69-152, 2009.
    〔8〕 Zhichao Ruan, et al., “Ideal Cylindrical:Cloak Perfect but Sensitive to Tiny Perturbations”, PRL 99, 113903, 14 September 2007.
    〔9〕 Min Yan, Zhichao Ruan and Min Qiu, “Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible”, PRL 99, 233901, 7 December 2007.
    〔10〕 Evgenii E. Narimanova and Alexander V. Kildisheva, “Optical black hole: Broadband omnidirectional light absorber”, Appl. Phys. Lett. 95, 041106, 27 July 2009.
    〔11〕 Hung-Wen Wang and Lien-Wen Chen, “A cylindrical optical black hole using graded index photonic crystals”, J. Appl. Phys. 109, 103104, 16 May 2011.
    〔12〕 林清凉、戴念祖,啟發性物理學─力學,三版,五南圖書出版股份有限公司,台北市,西元2008年4月。
    〔13〕 Jerry B. Marion, Classical Dynamics Of Particles And Systems, Fifth Edition, University of Maryland Press., 2003.
    〔14〕 Richard Phillips Feynman,費曼物理學講義Ⅰ力學、輻射與熱(3)─旋轉與震盪, 師明睿, 一版, 天下遠見出版股份有限公司,台北市,西元2008年10月31日。
    〔15〕 Stefan Prorok, “Nanophotonics and integrated optics Photonic Crystal Cavities”, CST of America, White Paper, February 21 2013.
    〔16〕 Min Qiu and Ziyang Zhang, “High-Q Microcavities in 2D Photonic Crystal Slabs Studied by FDTD Techniques and Pade Approximation“, Proc. of SPIE, Vol. 5733, pp. 366-376, May 5 2005.
    〔17〕 Jacob Scheuer and Amnon Yariv, “Annular Bragg Defect mode Resonators”, JOSA B, Vol. 20, Issue 11, pp. 2285-2291, July 11 2003.
    〔18〕 余敏仲,「漸變折射率法應用於高品質環形光子晶體共振腔之設計」,國立中央大學,碩士論文,民國102年。
    〔19〕 Alan Jeffrey and Daniel Zwillinger, Table of Integrals, Series, and Products, Seventh Edition, Elsevier Academic Press, 2007.
    〔20〕 曾謹言,量子力學 〈卷一〉,凡異文化事業有限公司,新竹市,民國88年10月。
    〔21〕 David J. Griffiths, Introduction to Electrodynamics, Third Edition, Pearson Education, New York, 2008.
    〔22〕 Amnon Yariv and Pochi Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation, John Wiley & Sons., New York, 1984.

    QR CODE
    :::