| 研究生: |
魏榮澤 Rong-Tz Wei |
|---|---|
| 論文名稱: |
雷射激發錫電漿產生極紫外光之頻譜分析 Spectral Analysis of Extreme Ultraviolet Light from Sn Laser-Produced-Plasma |
| 指導教授: |
陳仕宏
Shih-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 雷射激發電漿 、極紫外光 、錫 、電漿光譜學 |
| 外文關鍵詞: | laser-produced plasma, extreme ultraviolet, tin, plasma spectroscopy |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
強場雷射產生的錫電漿可以激發中心波長13.5奈米的寬頻極紫外光,此光源可應用於光學同調顯像儀,由於極紫外光源具備短中心波長與寬頻的特性,可為生物細胞等相關研究提供奈米尺度的縱向解析度顯影。因此我們運用解析與模擬的方法進行雷射產生錫電漿極紫外光光譜學的研究。
本論文首先介紹穩態輻射電漿光譜模型的學理基礎與架構,此物理模型以哈特里-福克原子架構程式Cowan code為基礎,並考慮能階交互作用和相對論效應,以計算穩態錫電漿中+4到+13價錫離子內部4d-4f和4p-4d的原子能階躍遷,進而推估躍遷產生的自發輻射極紫外光光源強度與電漿不透明度所造成的再吸收效應。此模型計算得到的電漿光譜特性與實驗量測相當吻合,藉由分析Nd:YAG雷射與CO2雷射產生的電漿光譜特性,得到極紫外光源之光學同調顯像儀達到最高解析度下的雷射電漿操作條件,可以做為將來實驗之參考。
The broadband extreme ultraviolet (EUV) light with a central wavelength 13.5-nm can be generated by laser-produced Sn plasmas. The broadband EUV light source can be applied on optical coherence tomography (OCT) to provide images of biological cells with nanometer-scale resolution. Therefore, the theoretic analysis and numerical methods are used to study the spectrum of the laser-produced Sn plasma EUV light source.
Firstly, the fundamentals and structure of the numerical model for a steady-state plasma spectroscopy are discussed in the thesis. Based on the Hartree-Fock (HF) atomic structure code (Cowan) with the consideration of the relativistic and configuration-interaction (CI) effects, the EUV light spectrum majorly contributed by 4p-4d and 4d-4f transitions among ions of Sn V - XVI. The numerical analysis also includes the calculation of plasma emissivity and opacity. The numerical results agree well with experimental measurements. Furthermore, the parametric studies for spectral properties of Sn plasmas produced by Nd:YAG and CO2 laser are shown in the last part of the thesis. The study can provide the optimized plasma conditions to achieve the proper EUV light source for the EUV OCT.
[1] V. Bakshi, “EUV Sources for Lithography, Bellingham,” Washington USA, SPIE Press, (2005).
[2] B. Alberts, et al., “Molecular biology of the cell,” 4th ed., Garland Science, (2002).
[3] Huang, et al., “Optical coherence tomography,” Science 254 (5035) 1178-1181, (1991).
[4] I. Kuznetsov, et al., “Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry”, Nature Commun. 6 (6944), (2015).
[5] Izatt J. A., et al., “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron 2 1017–1028, (1996).
[6] L. De-Pablo-Gómez-de-Liaño, et al., “Agreement Between Three Optical Coherence Tomography Devices to Assess the Insertion Distance and Thickness of Horizontal Rectus Muscles,” JPOS 54 (3) 168-176, (2017).
[7] Ying Yang, et al., “Investigation of optical coherence tomography as an imaging modality in tissue engineering,” Phys. Med. Biol. 51 (7) 1649-59, (2006).
[8] Hee M. R., et al., “Optical coherence tomography of the human retina,” Arch. Ophthalmol, 113 (3) 325-32, (1995).
[9] Hee M. R., et al., “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging”, J. Opt. Soc. Am. B 9 (6) 903-908, (1992).
[10] Vakoc B. J., et al., “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12 (5) 363-8, (2012).
[11] Y. Tao, et al., “Investigations on the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101 023305, (2007).
[12] S. S. Harilal, et al., “Extreme ultraviolet spectral purity and magnetic ion debris mitigation with low density tin targets,” Opt. Lett. 31 (10) 1549-1551, (2006).
[13] R. W. Coons, et al., “Comparison of EUV spectral and ion emission features from laser-produced Sn and Li plasmas,” Proc. of SPIE 7636 763636-1, (2010).
[14] S. Fuchs, et al., “Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation,” Appl. Phys B 106 (4), 789–795, (2012).
[15] S. Fuchs, et al., “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation,” Scientific Reports 6 20658, (2016).
[16] Sansone, G., et al., “High-energy attosecond light sources,” Nature Photon 11 655–663, (2011).
[17] Popmintchev, T., et al., “The attosecond nonlinear optics of bright coherent X-ray generation,” Nature Photon 4 822–832, (2010).
[18] V. Sizyuk, et al., “Three-dimensional simulation of laser produced plasma for extreme ultraviolet lithography applications,” Journal of applied physics 100 (10) 103106, (2006).
[19] K. Nishihara, et al., “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Physics of Plasmas 15 (5), 056708, (2008).
[20] J. Abdallah Jr., R. E. H. Clark, and R. D. Cowan, “Theoretical Atomic Physics Code Development I CATS: Cowan Atomic Structure Code,” Los Alamos National Laboratory, (Dec. 1988).
[21] R. D. Cowan, “The theory of atomic structure and spectra,” vol. 3. Univ. of California Press, (1981).
[22] H. Kinoshita, et al., “Soft x-ray reduction lithography using multilayer mirrors,” J. Vac. Sci. Technol. B7 1648–1651, (1989).
[23] G. D. Kubiak, et al., “Debris-free EUVL sources based on gas jets,” OSA trends in Optics and Photonics 4 in Extreme Ultraviolet Lithography,” D. Kubiak and D. R. Kania, Eds., OSA 66–71, (1996).
[24] T. Aota, et al., “Use of tin as a plasma source material for high conversion efficiency,” Proc. SPIE 5037 147-155, (2003).
[25] J. R. Hoffman, et al., “LPP EUV conversion efficiency optimization,” Proc. SPIE 5751 892, (2005).
[26] M. Vandevraye, C. Drag, and C. Blondel, “Electron affinity of tin measured by photodetachment microscopy,” J. Phys. B 46 (12) 125002, (2013).
[27] A. R. P. Rau, “The quantum defect: Early history and recent developments,” Am. J. Phys. 65 (3), (1997).
[28] D. J. Hughes and C. Eckart, “The Effect of the Motion of the Nucleus on the Spectra of Li I and Li II,” Phys. Rev. 36, 694–698, (1930).
[29] H. Schüler and H. Brück, “Über Hyperfeinstrukturen und Kernmomente,” Zeits. f. Physik 58 741, (1929).
[30] J. E. Mack and Hack Arroec,“Isotope Shift in Atomic Spectra,” Annu. Rev. Nucl. Sci. 6, 117-128, (1956).
[31] J. Meija, et al., “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88 (3) 265–291, (2016).
[32] D. R. Lide, “CRC Handbook of Chemistry and Physics,” CRC Press, (2002).
[33] D. N. Stacey, “Isotope shift and hyper fine structure in the spectrum of tin,” Proc. Royal Soc. A 280 (1382) 439-446, (1964).
[34] R. M. More, et al., “Semiclassical calculation of oscillator-strengths,” Journal de Physique 50 (1) 35-44, (1989)
[35] I. C. E. Turcu and J. B. Dance, “X-Rays from Laser Plasmas:Generation and Applications,” John Wiley & Sons Ltd., (1999).
[36] Ella Sciamma-O’Brien. Plasma spectroscopic diagnostic tool using collisional-radiative models and its application to different plasma discharges for electron temperature and neutral density determination (Unpublished Doctoral dissertation). The University of Texas at Austin, (2007).
[37] D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasma,” J. Appl. Phys. 44 (8), (1973).
[38] N. Itoh, "A membrane reactor using palladium," AIChE Journal 33 (9) 1576-1578, (1987).
[39] Po-Yen Lai, Numerical study of laser-driven plasma spectroscopy and kinetic behavior of a collisional plasma: For application of a laser-produced Sn plasma extreme ultraviolet light source. National Central University at Taiwan, (2016).
[40] G. Wertheim, M. Butler, K. West, and D. Buchanan, “Determination of the Gaussian and Lorentzian content of experimental line shapes,” Review of Scientific Instruments 45 (11), pp. 1369-1371, (1974).
[41] Y. Y. Li, et al., “Interferometry Based EUV Spectrometer,” IEEE Photonics Journal 9 (4), (2017).
[42] J. White, Opening the extreme ultraviolet lithography source bottleneck Developing a 13.5-nm laser-produced plasma source for the semiconductor industry. University Collage Dublin, (2006).
[43] V. Y. Banine, et al., “Physical processes in EUV sources for microlithography,” J. Phys. D 44 (25), (2011).
[44] A. N. Cox, et al., “Astrophysical Quantities,” 4th ed., American Institute of Physics Press, (1996).