| 研究生: |
林芳慶 Fang-Ching Lin |
|---|---|
| 論文名稱: |
離子液體於鋁離子電池電解質之應用 Ionic Liquids Electrolyte for Use in Al-ion Batteries |
| 指導教授: | 張仍奎 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 離子液體 、金屬離子電池 、鋁 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選用鋁金屬作為電池負極材料,以離子液體作為電解質,探討鋁於離子液體中的反應可逆性、電化學行為與穩定性。研究使用四種離子液體,種類如下: EMICl-AlCl3 (1-ethyl-3-methylimidazolium chloride/aluminum chloride)、Bu3MeNCl -AlCl3 (Tributyl-methylamine chloride/aluminum chloride)、BMP-DCA (1-butyl-1-methylpyrrolidinium /dicyanmide) 添加AlCl3與 EMI-TFSI (1-ethyl-3-methylimidazolium/ bis(trifluoromethanesulfonyl)imide)添加AlCl3上層液。實驗結果發現鋁在EMICl-AlCl3離子液體中的反應可逆性與電化學行為最佳,經過兩千圈循環伏安掃描循環後,仍有95 % 的電流效率。顯示陽離子種類會影響鋁於離子液體中的電化學性質,而陰離子種類則會造成混合液是否分層,亦影響鋁於離子液體中的沉積行為。
後續研究選用釩氧化物作為正極材料主體,材料製程選用陽極沉積法與水熱法,於EMICl-AlCl3離子液體中進行電化學性質研究。實驗結果顯示Al2Cl7-離子在釩氧化物電極內沒有明顯的遷入遷出反應,原因在於Al2Cl7-離子的尺寸過大,電極材料需有特殊結構才能提供Al2Cl7-離子遷入遷出,需待後續進一步研究才能明瞭適用的電極結構。
In this study, we have investigated the electrochemical behavior of Aluminium in various ionic liquids (ILs). These ILs are EMICl-AlCl3 (1-ethyl-3-methylimidazolium chloride/aluminum chloride), Bu3MeNCl -AlCl3 (Tributyl-methylamine chloride/aluminum chloride),BMP-DCA (1-butyl-1-methylpyrrolidinium /dicyanmide) with AlCl3 additive and the upper layer solution of EMI-TFSI (1-ethyl-3-methylimidazolium/ bis(trifluoromethanesulfonyl)imide) with AlCl3 additive. We have known about Aluminium showed near 95 % retention efficiency after 2000 life cycles in the EMICl-AlCl3 ionic liquid. It is the best prefoimance in the four kinds of ionic liquids.
In the following research, we choosed vanadium-oxide as the anode made by anodic deposition method and hydrothermal method. The result showed vanadium-oxide could not make Al2Cl7- ion insertion and deinsertion, which is the main species of Aluminium in EMICl-AlCl3 ionic liquid. The result means that the crstallography and categories of electrode materials have important influence on Al2Cl7- ion insertion and deinsertion.
1. ExxonMobil, 2004. The Lamp, ExxonMobil's quarterly shareholders publication. Available at www.exxonmobil.com. Accessed 5 July 2013.
2. David Linden and Thomas B. Reddy, Handbook of Batteries (3rd ed.). McGraw-Hill, 2002.
3. U.S. Department of Energy 2010. Aluminum-Ion Battery to Transform 21st Century Energy Storage . U.S. Patent No. 201002383, 201002387, 201002388.
4. John D. Stenger-Smith and Jennifer A. Irvin, Ionic Liquids for Energy Storage Applications.Material Matters, 2009. 4(4):p. 103.
5. S. Zein El Abedin, E.M. Moustafa, R. Hempelmann, H. Natter,and F. Endres, Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid. Electrochemistry Communications, 2005. 7(11):p. 1111–1116.
6. S. Zein El Abedin, E. M. Moustafa, R. Hempelmann, H. Natter, F. Endres, Electrodeposition of Nano- and Microcrystalline Aluminium in Three Different Air and Water Stable Ionic Liquids. ChemPhysChem, 2006. 7(7):p. 1535 – 1543.
7. Ming-Jay Deng, Po-Yu Chen,Tin-Iao Leong, I-Wen Sun, Jeng-Kuei Chang, Wen-Ta Tsai, Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochemistry Communications, 2008. 10(2):p.213–216.
8. Philipp Eiden, Qunxian Liu, Sherif Zein El Abedin, Frank Endres, and Ingo Krossing, An Experimental and Theoretical Study of the Aluminium Species Present in Mixtures of AlCl3 with the Ionic Liquids [BMP]Tf2N and [EMIm]Tf2N. Chemistry - A European Journal, 2009. 15:p. 3426 – 3434.
9. P. Wasserchied and T. Welton, Ionic Liquids in Synthesis (2nd ed.), Wiley-VCH: Weinheim, Germany, 2003.
10. A. E. Visser, R. P. Swatlowski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis, R. D. Rogers, Task-Specific Ionic Liquids for the Extraction of Metal Ions from Aqueous Solutions. Chemical Communications, 2001. (1):p.135-136.
11.T. Jiang, M. J. C. Brym, G. Dubé, A. Lasia, G. M. Brisard, Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surface and Coatings Technology, 2009. 201(1): p.1-9.
12. G. R. Stafford and C. L. Hussey, In Advances in Electrochemical Science and Engineering, Wiley-VCH, Weinheim, 2002.
13. P. K. Lai and M. S. Kazacos, Electrodeposition of aluminium in aluminium chloride/1-methyl-3-ethylimidazolium chloride. Journal of Electroanalytical Chemistry, 1988. 248 (2):p.431-440.
14. R. T. Carlin and R. A. Osteryoung, Aluminum Anodization in a Basic Ambient Temperature Molten Salt. Journal of The Electrochemical Society, 1989. 136(5):p.1409-1415.
15. T. J. Melton, J. Joyce, J. T. Maloy, J. A. Boon,J. S. Wikes, Electrochemical Studies of Sodium Chloride as a Lewis Buffer for Room Temperature Chloroaluminate Molten Salts. Journal of The Electrochemical Society,1990. 137(12):p.3865-3869.
16. R. L. Perry, K. M. Jones, W. D. Scott, Q. Liao, C. L. Hussey, Densities, Viscosities, and Conductivities of Mixtures of Selected Organic Cosolvents with the Lewis Basic Aluminum Chloride + 1-Methyl-3-ethylimidazolium Chloride Molten Salt. Journal of Chemical & Engineering Data, 1995. 40(3):p. 615-619.
17. Q. Liao, W. R. Pitner, G. Stewart, C. L. Hussey, G. R. Stafford, Electrodeposition of Aluminum from the Aluminum Chloride‐1‐Methyl‐3‐ethylimidazolium Chloride Room Temperature Molten Salt + Benzene. Journal of The Electrochemical Society, 1997. 144(3):p. 936-943.
18. J. K. Chang, S. Y. Chen, W. T. Tsai, M. J. Deng, I. W. Sun, Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior. Electrochemistry Communications, 2007. 9(7):p. 1602-1606.
19. J. K. Chang, S. Y. Chen, W. T. Tsai, M. J. Deng,and I. W. Sun, Improved Corrosion Resistance of Magnesium Alloy with a Surface Aluminum Coating Electrodeposited in Ionic Liquid. J. Journal of the Electrochemical Society,2008. 155(3) :C. 112-116.
20. J. K. Chang, I.Wen Sun, S. J. Pan, M. H. Chuang, M. J. Deng,and W. T. Tsai, Electrodeposition of Al coating on Mg alloy from Al chloride/1-ethyl-3-methylimidazolium chloride ionic liquids with different Lewis acidity.Transactions of the Institute of Metal Finishing, 2008. 86(7):p. 227-233.
21. N. Jayaprakash, S. K. Das, L. A. Archer, The rechargeable aluminum-ion battery.Chemical Communications , 2011, 47(47), p. 12610–12612.
22. K. Kim,Christopher Lang, Roger Moulton, Paul A. Kohl, Electrochemical Investigation of Quaternary Ammonium/Aluminum Chloride Ionic Liquids. Journal of The Electrochemical Society, 2004. 151 (8): A1168-1172 .
23. Fei Liu, Shuyan Song, Dongfeng Xue, Hongjie Zhang, Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Research Letters, 2012, 7 (1):p. 149.
24. Jun Liu, Yichun Zhou, Jinbin Wang,Yong Pan,and Dongfeng Xue, Template-free solvothermal synthesis of yolk–shell V2O5 microspheres as cathode materials for Li-ion batteries. Chemical Communications, 2011. 47(7):p. 10380–10382.
25. 李冠融,「單晶釩氧化物薄膜的磁性與結構特性」,國立成功大學,碩士論文,民國96年。
26. 吳欣怡,「室溫離子熔液的合成及其在Diels-Alder反應的應用」, 國立成功大學,碩士論文,民國92年。
27. 陳樹友,「鎂合金於AlCl3-EMIC離子液體中鍍鋁層之耐蝕性質研究」,國立成功大學,碩士論文,民國96年。
28. 黎蕙瑛,「陽極沉積釩氧化物於離子液體中之擬電容行為」,國立 中央大學,碩士論文,民國101年。
29. Jean-Pierre, M. Veder, Michael D. Horne, Thomas Ru‥ther, Alan M. Bond,Theo Rodopoulos, The influence of thermal degradation on the electrodeposition of aluminium from an air- and water-stable ionic liquid. Physical Chemistry Chemical Physics, 2013. 15(20):p. 7470-7474.
30. Pierre Bonhoˆte, Ana-Paula Dias, Nicholas Papageorgiou, Kuppuswamy Kalyanasundaram, Michael Gratzel, Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. I norganic chemistry. 1996. 35(5):p. 1168-1178.
31. Guicun Li, Shuping Pang, Li Jiang, Zhiyan Guo, Zhikun Zhang, Environmentally Friendly Chemical Route to Vanadium Oxide Single-Crystalline Nanobelts as a Cathode Material for Lithium-Ion Batteries. The Journal of Physical Chemistry B, 2006. 110(19):p. 9383-9386.
32. Hikaru Sano, Hikari Sakaebe, Hajime Matsumoto, Effect of Organic Additives on Electrochemical Properties of Li Anode in Room Temperature Ionic Liquid. Journal of The Electrochemical Society, 2011 158 (3):A316-321.
33. Nobuyuki Koura, Hiroshi Nagase, Atsushi Sato, Shintaro Kumakura, Ken Takeuchi, Koichi Ui, Tetsuya Tsuda, Chun K. Loong, Electroless Plating of Aluminum from a Room-Temperature Ionic Liquid Electrolyte. Journal of The Electrochemical Society, 2008. 155(2) :D155-D157.
34. Yu-Zhuan Su, Yong-Chun Fu, Yi-Min Wei, Jia-Wei Yan, Bing-Wei Mao, The Electrode/Ionic Liquid Interface: Electric Double Layer and Metal Electrodeposition. A European Journal of Chemical Physics and Physical Chemistry, 2010. 11(10):p. 2764 – 2778.
35. Kenneth R. Seddon, Annegret Stark, Maria-Jose Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 2000. 72(12), p. 2275–2287.
36. Qingfeng Li,and Niels J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. Journal of Power Sources, 2002. 110(1):p. 1–10.
37. Shaohua Yang,and Harold Knickle, Design and analysis of aluminum /air battery system for electric vehicles. Journal of Power Sources, 2002. 112 (1):p.162–173.
37. V. Kamavaram, D. Mantha, R.G. Reddy, Recycling of aluminum metal matrix composite using ionic liquids: Effect of process variables on current efficiency and deposit characteristics. Electrochimica Acta, 2005. 50(16):p. 3286–3295.
38. G.M. Wu, S.J. Lin, C.C. Yang, Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes. Journal of Membrane Science, 2006. 280 (2):p. 802–808.
39. Andrey Z. Zhuk, Alexander E. Sheindlin, Boris V. Kleymenov,Eugene I. Shkolnikov,and Marat Yu. Lopatin, Use of low-cost aluminum in electric energy production. Journal of Power Sources, 2006. 157 (2): p. 921–926.
40 T. Jiang, M.J. Chollier Brym, G. Dubé, A. Lasia,and G.M. Brisard, Studies on the AlCl3/dimethylsulfone (DMSO2) electrolytes for the aluminum deposition processes.Surface & Coatings Technology, 2007. 201 (14):p. 6309–6317.
41 E.I. Shkolnikov, A.Z. Zhuk, M.S. Vlaskin, Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable and Sustainable Energy Reviews, 2011. 15 (9):p.4611– 4623.
42 P. Giridhar, S. Zein El Abedin, F. Endres, Electrodeposition of aluminium from 1-butyl-1-methylpyrrolidinium chloride/AlCl3 and mixtures with 1-ethyl-3-methylimidazolium chloride /AlCl3.Electrochimica Acta, 2012. 70:p.210– 214.
43. Tokyo University of Science Koura Lab, 2005. Tokyo : Tokyo University. Available at www.rs.noda.tus.ac.jp. Accessed 1 July 2013.
44. Mara G. Freire, Pedro J. Carvalho, Ramesh L. Gardas, Isabel M. Marrucho,Luı´s M. N. B. F. Santos, Joa˜o A. P. Coutinho, Mutual Solubilities of Water and the [Cnmim][Tf2N] Hydrophobic Ionic Liquids. The Journal of Physical Chemistry B, 2008. 112(6):p. 1604-1610.
45. Michel armand, Frank endres, douglas r. macFarlane, hiroyuki ohno, bruno scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nature materials, 2009. 8:p.621-629.
46. 林正一,「離子液體對材料的腐蝕性以及對鎂金屬表面處理的應 用」,國立中央大學,碩士論文,民國101年。
47. 賴俊宏,「陽極沉積法製備釩氧化物之電容器特性研究」,私立逢 甲大學,碩士論文,民國100年。
48. Frank endres et al., Electrodeposition from Ionic Liquids (1st ed.), Wiley,2008.
49. Natalia V. Plechkova and Kenneth R. Seddon, Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 2008. 37(1):p. 123–150.
50. Sergei V. Dzyuba and Richard A. Bartsch, Influence of Structural Variations in 1-Alkyl(aralkyl)-3-Methylimidazolium Hexafluorophosphates and Bis(trifluoromethylsulfonyl)imides on Physical Properties of the Ionic Liquids. A European Journal of Chemical Physics and Physical Chemistry, 2002. 3(2):p.161–166.
51. D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G. B. Deacon, Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chemical Communications, 2001. (16):p.1430–1431.
52. Eugene Khoo, JinMin Wang, Jan Ma and Pooi See Lee, Electrochemical energy storage in a β-Na0.33V2O5 nanobelt network and its application for supercapacitors. Journal Of Materials Chemistry, 2010. 20(38):p. 8368–8374