| 研究生: |
蘇友信 You-Sin Su |
|---|---|
| 論文名稱: |
以 OWL 與 SWRL來促進監控系統的維護性與彈性 An OWL and SWRL Based Surveillance System that Facilitates Maintainability and Flexibility |
| 指導教授: |
陳振炎
Jen-Yen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 監控系統 、語意網規則語言 、網路知識本體語言 |
| 外文關鍵詞: | Surveillance system, Web ontology language (OWL), Semantic web rule language (SWRL) |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來監控系統導入 context-awareness 技術,描述受監控的環境,使系統可瞭解環境中的資訊,並提供有效的危險偵測。隨著系統日漸複雜,也面臨 maintainability 與 flexibility 的問題。本文提出以 web ontology language (OWL) 與 semantic web rule language (SWRL) 為基礎的監控系統,使用 OWL 描述環境資訊,並配合 Protégé 圖形化工具方便 user 維護,改進系統的 maintainability;使用 SWRL 描述環境中的危險狀況,降低 rules 與 rule engine 之間的 coupling,提昇系統選用 rule engine的 flexibility。
Recently, surveillance systems have implemented context-awareness techniques to monitor context, and thus to provide efficient danger detection. As these systems get more and more complicated, they face maintainability and flexibility issues. Therefore, we propose a web ontology language (OWL) and semantic web rule language (SWRL) based surveillance system. By using OWL to describe context, user can use the Protégé graphical tool to maintain it. This improves system maintainability. Further, by using SWRL to describe rules of dangerous situation, the coupling between rules and rule engine is greatly reduced. This improves system flexibility in choosing alternative rule engines.
[1] Stanford University. The Protégé Ontology Editor and Knowledge Acquisition System. [Online]. Available: http://protege.stanford.edu/.
[2] World Wide Web Consortium. OWL Web Ontology Language Overview. [Online]. Available: http://www.w3.org/TR/owl-features/.
[3] World Wide Web Consortium. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. [Online]. Available: http://www.w3.org/Submission/SWRL/.
[4] Stanford University. SWRLTab. [Online]. Available: http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab.
[5] S. Thomas and L. P. Claudia, “A Context Modeling Survey,” in Workshop on Advanced Context Modeling, Reasoning and Management as Part of UbiComp 2004, The 6th International Conference on Ubiquitous Computing, Sept. 2004, pp.33-40.
[6] V. D. Shet, D. Harwood, L. S. Davis, “VidMAP: Video Monitoring of Activity with Prolog,” Advanced Video and Signal Based Surveillance, IEEE Conference Sept. 2005, p.224-229.
[7] K. Barbara and H. Rainer, “Event Detection for Video Surveillance Using an Expert System,” International Multimedia Conference, Proceeding of the 1st ACM workshop on Analysis and retrieval of events/actions and workflows in video streams. Oct. 2008, p.49-55
[8] L. W. Goix, M. Valla, L. Cerami and P. Falcarin, “Situation Inference for Mobile Users: a Rule Based Approach,” Mobile Data Management, International Conference, May 2007, p.299-303.
[9] E.J. Ko, H.J. Lee and J.W. Lee, “Ontology-Based Context Modeling and Reasoning for U-HealthCare,” IEICE Transactions on Information and Systems, 2007, Vol.e90-d(No.8).
[10] L. Snidaro, M. Belluz, G. L. Foresti, “Representing and Recognizing Complex Events in Surveillance Applications,” Advanced Video and Signal Based Surveillance, IEEE Conference Sept. 2007, p.493-498.
[11] Sandia National Laboratories, Jess, the Rule Engine for the Java Platform, [Online] Available: http://www.jessrules.com/.
[12] Research Center for Information Technologies (FZI), University of Karlsruhe and University of Manchester. KAON2: Ontology Management for the Semantic Web. [Online]. Available: http://kaon2.semanticweb.org/.
[13] Clark & Parsia, LLC. Pellet: The Open Source OWL DL Reasoner. [Online]. Available: http://clarkparsia.com/pellet/.
[14] Ontotext lab, Sirma group corp. OWLIM: OWL Semantic Repository. [Online]. Available: http://www.ontotext.com/owlim/.