| 研究生: |
張育騰 Yu-Tang Chang |
|---|---|
| 論文名稱: |
人類多能幹細胞在寡肽接枝水凝膠上的培養和分化為間葉幹細胞 Culture and Differentiation of Human Pluripotent Stem Cells into Mesenchymal Stem Cells on Oligopeptide-grafted Hydrogels |
| 指導教授: |
樋口亞紺
Akon Higuchi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 幹細胞 、分化 、水凝膠 、寡肽 、界達電位 |
| 外文關鍵詞: | stem cell, differentiation, hydrogel, oligopeptide, zeta potential |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類多能幹細胞 (hPSCs) 包括人類胚胎幹細胞 (hESCs) 和人類誘導多能幹細胞 (hiPSCs) 具有分化成內胚層、外胚層和中胚層等三個胚層的細胞的能力。hPSCs 充分分化為特定的細胞譜係可以通過細胞培養生物材料進行調節,因為 hPSCs 受細胞培養生物材料的物理和生物學信號的調節。在本研究中,已開發出嫁接了幾種細胞外基質 (ECM) 衍生肽的水凝膠,可用於 hPSC 培養和分化為間充質乾細胞。選擇具有最佳彈性(25.3 kPa)的聚乙烯醇-衣康酸PVA-IA、水凝膠作為基礎細胞培養生物材料。使用N-(3-二甲基氨基丙基)-N'-乙基碳二亞胺鹽酸鹽 (EDC) 和 N-羥基琥珀酰亞胺 (NHS) 化學將幾種類型的層粘連蛋白和玻連蛋白衍生的寡肽移植到 PVA-IA 水凝膠上。人類 iPSC 可以在一些具有 25.3 kPa 彈性(24 小時交聯時間)的寡肽接枝水凝膠上很好地繁殖且繼代超過 10 次。當研究每個代數中每個寡肽接枝水凝膠上 hiPSCs 的膨脹倍數時,發現接枝有 LB2CKKK (GCGGKKKPMQKMRGDVFSP) 和 KKLB2CK (KKGCGGKGGPMQKMRGDVFSP) 寡肽的水凝膠對於 hPSC 增殖是最優選的,其中水凝膠的彈性是 25.3 千帕。發現在寡肽上插入賴氨酸 (K) 的正氨基酸對於 hiPSC 在寡肽接枝水凝膠上的最佳增殖至關重要,這有助於提高水凝膠的 zeta 電位。 尤其是,隨著接枝有來自層粘連蛋白β4鏈的幾種寡肽的水凝膠的zeta電位的增加,發現在接枝有幾種寡肽的水凝膠上培養的hiPSCs的增殖更好(更高的膨脹倍數),其中賴氨酸的正氨基酸插入到寡肽促進了與寡肽接枝的水凝膠的高 zeta 電位。 人類胚胎幹細胞在移植有 (a) 層粘連蛋白衍生寡肽和 (b) 玻連蛋白衍生寡肽的水凝膠上分化為間葉幹細胞 (MSC) 。LB2CK (KGCGGKGGPMQKMRGDVFSP) 移植水凝膠上的人類 ESC 衍生 MSCs 表現出最佳形態、極好的倍增時間以及最高的 MSCs 表面標誌物表達。人類 iPSC 可以在移植有 LB2CKKK 寡肽的基於樹枝狀大分子的水凝膠上廣泛增殖並形成一個菌落,這是另一種有前途的無異種細胞培養生物材料。 我希望這項研究中開發的水凝膠將來可以用於臨床治療。
Human pluripotent stem cells (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have the ability to differentiate into the cells derived from three germ layers, such as endoderm, ectoderm and mesoderm. The pluripotency maintenance and adequate differentiation of hPSCs into specific lineage of the cells can be regulated by cell culture biomaterials, because hPSCs are regulated by physical and biological cues of the cell culture biomaterials. The hydrogels grafted with several extracellular matrix (ECM)-derived peptides, which have optimal elasticity have been developed for hPSC culture and differentiation into mesenchymal stem cells in this study. Poly (vinyl alcohol-co-itaconic acid), PVA-IA, hydrogels having optimal elasticity (25.3 kPa) were selected as base cell culture biomaterials. Several types of laminin- and vitronectin-derived oligopeptides were grafted on PVA-IA hydrogels using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) chemistry. Human PSCs could proliferate well on some oligopeptides-grafted hydrogels having 25.3 kPa elasticity (24h crosslinking time) for more than 10 passages. When the expansion fold of hiPSCs was investigated on each oligopeptide-grafted hydrogel at each passage, the hydrogels grafted with oligopeptides of LB2CKKK (GCGGKKKPMQKMRGDVFSP) and KKLB2CK (KKGCGGKGGPMQKMRGDVFSP) were found to be the most preferable for hPSC proliferation where the elasticity of the hydrogels was 25.3 kPa. Positive amino acid of lysine (K) insertion on the oligopeptide was found to be critical for optimal proliferation of hPSCs on the oligopeptide-grafted hydrogels, which contributed to enhance zeta potential of the hydrogels. Especially, better proliferation (higher expansion fold) of hPSCs cultured on the hydrogels grafted with several oligopeptides was found with the increase of the zeta potential of the hydrogels grafted with several oligopeptides derived from laminin β4 chain, where positive amino acid of lysine insertion into the oligopeptides promoted high zeta potential of the hydrogels grafted with oligopeptides. Human ESCs were differentiated into MSCs on hydrogels grafted with (a) laminin derived oligopeptide and (b) vitronectin derived oligopeptide. Human ESC-derived MSCs on LB2CK (GCGGKGGPMQKMRGDVFSP)-grafted hydrogels showed the best morphology, excellent doubling time and also the highest MSCs surface marker expression. Human iPSCs could proliferate and form into a colony extensively on dendrimer-based hydrogels grafted with LB2CKKK oligopeptides, which were another promising xeno-free cell culture biomaterials. I hope that the hydrogels developed in this study can be used in clinical therapy in the future.
1. Melton, D., ‘Stemness’: definitions, criteria, and standards, in Essentials of stem cell biology. 2014, Elsevier. p. 7-17.
2. Hayes, M., et al., Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome-hope or hype? Critical Care, 2012. 16(2): p. 1-14.
3. Takahashi, K., et al., Induction of pluripotent stem cells from fibroblast cultures. Nature protocols, 2007. 2(12): p. 3081-3089.
4. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006. 126(4): p. 663-676.
5. Kaebisch, C., et al., The role of purinergic receptors in stem cell differentiation. Computational and structural biotechnology journal, 2015. 13: p. 75-84.
6. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
7. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. The international journal of biochemistry & cell biology, 2006. 38(7): p. 1063-1075.
8. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. science, 1998. 282(5391): p. 1145-1147.
9. Landry, D.W. and H.A. Zucker, Embryonic death and the creation of human embryonic stem cells. The Journal of Clinical Investigation, 2004. 114(9): p. 1184-1186.
10. Castro-Viñuelas, R., et al., Generation and characterization of human induced pluripotent stem cells (iPSCs) from hand osteoarthritis patient-derived fibroblasts. Scientific Reports, 2020. 10(1): p. 1-13.
11. Kim, D., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell stem cell, 2009. 4(6): p. 472.
12. Miyoshi, K., et al., Generation of human induced pluripotent stem cells from oral mucosa. Journal of bioscience and bioengineering, 2010. 110(3): p. 345-350.
13. Ohnuki, M., K. Takahashi, and S. Yamanaka, Generation and characterization of human induced pluripotent stem cells. Current protocols in stem cell biology, 2009. 9(1): p. 4A. 2.1-4A. 2.25.
14. Takayama, N., et al., Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. Journal of Experimental Medicine, 2010. 207(13): p. 2817-2830.
15. Faravelli, I., et al., Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cellular and molecular life sciences, 2014. 71(17): p. 3257-3268.
16. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in polymer science, 2014. 39(7): p. 1348-1374.
17. Bai, H. and Z. Wang, Directing human embryonic stem cells to generate vascular progenitor cells. Gene therapy, 2008. 15(2): p. 89-95.
18. Martin, U., Therapeutic application of pluripotent stem cells: challenges and risks. Frontiers in medicine, 2017. 4: p. 229.
19. Liu, G., et al., Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem cell reviews and reports, 2020. 16(1): p. 3-32.
20. Jiang, B., et al., Concise review: mesenchymal stem cells derived from human pluripotent cells, an unlimited and quality-controllable source for therapeutic applications. Stem cells, 2019. 37(5): p. 572-581.
21. Sohni, A. and C.M. Verfaillie, Mesenchymal stem cells migration homing and tracking. Stem cells international, 2013. 2013.
22. Parekkadan, B. and J.M. Milwid, Mesenchymal stem cells as therapeutics. Annual review of biomedical engineering, 2010. 12: p. 87-117.
23. Merimi, M., et al., The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Frontiers in Cell and Developmental Biology, 2021. 9.
24. Ferreira, J.R., et al., Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Frontiers in immunology, 2018. 9: p. 2837.
25. Hynes, K., et al., Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem cells and development, 2014. 23(10): p. 1084-1096.
26. Penny, J., et al., The biology of equine mesenchymal stem cells: phenotypic characterization, cell surface markers and multilineage differentiation. Front Biosci, 2012. 17(3): p. 892.
27. Sharma, R.R., et al., Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion, 2014. 54(5): p. 1418-1437.
28. Ullah, I., R.B. Subbarao, and G.J. Rho, Human mesenchymal stem cells-current trends and future prospective. Bioscience reports, 2015. 35(2).
29. Gronthos, S., et al., The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. 1994.
30. Mamidi, M.K., et al., Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. Journal of cellular biochemistry, 2012. 113(10): p. 3153-3164.
31. Otsuru, S., et al., Improved isolation and expansion of bone marrow mesenchymal stromal cells using a novel marrow filter device. Cytotherapy, 2013. 15(2): p. 146-153.
32. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. science, 1999. 284(5411): p. 143-147.
33. Stewart, K., et al., Further characterization of cells expressing STRO‐1 in cultures of adult human bone marrow stromal cells. Journal of Bone and Mineral Research, 1999. 14(8): p. 1345-1356.
34. Baglioni, S., et al., Characterization of human adult stem‐cell populations isolated from visceral and subcutaneous adipose tissue. The FASEB Journal, 2009. 23(10): p. 3494-3505.
35. Gronthos, S., et al., Surface protein characterization of human adipose tissue‐derived stromal cells. Journal of cellular physiology, 2001. 189(1): p. 54-63.
36. Pendleton, C., et al., Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PloS one, 2013. 8(3): p. e58198.
37. Wagner, W., et al., Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental hematology, 2005. 33(11): p. 1402-1416.
38. Zhang, X., et al., Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. Journal of cellular biochemistry, 2011. 112(4): p. 1206-1218.
39. Cai, J., et al., Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. Journal of Biological Chemistry, 2010. 285(15): p. 11227-11234.
40. Tsai, M.S., et al., Isolation of human multipotent mesenchymal stem cells from second‐trimester amniotic fluid using a novel two‐stage culture protocol. Human reproduction, 2004. 19(6): p. 1450-1456.
41. int Anker, P.S., et al., Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003. 102(4): p. 1548-1549.
42. Kadar, K., et al., Differentiation potential of stem cells from human dental origin-promise for tissue engineering. J Physiol Pharmacol, 2009. 60(Suppl 7): p. 167-175.
43. Seifrtová, M., et al., The response of human ectomesenchymal dental pulp stem cells to cisplatin treatment. International endodontic journal, 2012. 45(5): p. 401-412.
44. Huang, G.-J., S. Gronthos, and S. Shi, Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of dental research, 2009. 88(9): p. 792-806.
45. Schüring, A.N., et al., Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertility and sterility, 2011. 95(1): p. 423-426.
46. Jiao, F., et al., Human mesenchymal stem cells derived from limb bud can differentiate into all three embryonic germ layers lineages. Cellular Reprogramming (Formerly" Cloning and Stem Cells"), 2012. 14(4): p. 324-333.
47. Ab Kadir, R., et al., Characterization of mononucleated human peripheral blood cells. The Scientific World Journal, 2012. 2012.
48. Raynaud, C., et al., Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation. Stem cells international, 2012. 2012.
49. Moretti, P., et al., Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications, in Bioreactor Systems for Tissue Engineering II. 2009, Springer. p. 29-54.
50. Kita, K., et al., Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem cells and development, 2010. 19(4): p. 491-502.
51. Riekstina, U., et al., Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology, 2008. 58(3): p. 153-162.
52. Bartsch Jr, G., et al., Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem cells and development, 2005. 14(3): p. 337-348.
53. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
54. Filip, S., et al., Stem cell plasticity and issues of stem cell therapy. Folia biologica, 2005. 51(6): p. 180.
55. Li, E., et al., Generation of mesenchymal stem cells from human embryonic stem cells in a complete serum-free condition. International journal of biological sciences, 2018. 14(13): p. 1901.
56. Higuchi, A., et al., Stem Cell Culture on Polymer Hydrogels, in Hydrogels. 2018, Springer. p. 357-408.
57. Higuchi, A., et al., Physical cues of biomaterials guide stem cell differentiation fate. Chemical reviews, 2013. 113(5): p. 3297-3328.
58. Pessach, I.M., et al., Induced pluripotent stem cells: a novel frontier in the study of human primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2011. 127(6): p. 1400-1407. e4.
59. Gavrilov, S., et al., Derivation of two new human embryonic stem cell lines from nonviable human embryos. Stem Cells International, 2011. 2011.
60. Polak, U., et al., Selecting and isolating colonies of human induced pluripotent stem cells reprogrammed from adult fibroblasts. JoVE (Journal of Visualized Experiments), 2012(60): p. e3416.
61. Soares, F.A., R.A. Pedersen, and L. Vallier, Generation of human induced pluripotent stem cells from peripheral blood mononuclear cells using Sendai virus, in Induced Pluripotent Stem (iPS) Cells. 2015, Springer. p. 23-31.
62. Wang, I.-N.E., et al., Apelin enhances directed cardiac differentiation of mouse and human embryonic stem cells. PloS one, 2012. 7(6): p. e38328.
63. Ulm, A., et al., Cultivate primary nasal epithelial cells from children and reprogram into induced pluripotent stem cells. JoVE (Journal of Visualized Experiments), 2016(109): p. e53814.
64. Geis, F.K., et al., Potent and reversible lentiviral vector restriction in murine induced pluripotent stem cells. Retrovirology, 2017. 14(1): p. 1-15.
65. Uchida, N., et al., Efficient generation of β-globin-expressing erythroid cells using stromal cell-derived induced pluripotent stem cells from patients with sickle cell disease. Stem Cells, 2017. 35(3): p. 586-596.
66. Kleinman, H.K. and G.R. Martin. Matrigel: basement membrane matrix with biological activity. in Seminars in cancer biology. 2005. Elsevier.
67. Benton, G., et al., Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Advanced drug delivery reviews, 2014. 79: p. 3-18.
68. Taub, M., et al., Epidermal growth factor or transforming growth factor alpha is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proceedings of the National Academy of Sciences, 1990. 87(10): p. 4002-4006.
69. Basic, N., et al., TGF‐β and basement membrane matrigel stimulate the chondrogenic phenotype in osteoblastic cells derived from fetal rat calvaria. Journal of Bone and Mineral Research, 1996. 11(3): p. 384-391.
70. Suzuki, A., et al., Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. 2003.
71. Naugle, J.E., et al., Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling. American Journal of Physiology-Heart and Circulatory Physiology, 2006. 290(1): p. H323-H330.
72. Kihara, T., et al., Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. Biochemical and biophysical research communications, 2006. 341(4): p. 1029-1035.
73. Haylock, D.N. and S.K. Nilsson, Stem Cell Regulation by the Haemopoietic Stem Cell Niche. Cell cycle, 2005. 4(10): p. 1353-1355.
74. Flaim, C.J., S. Chien, and S.N. Bhatia, An extracellular matrix microarray for probing cellular differentiation. Nature methods, 2005. 2(2): p. 119-125.
75. Campbell, A., M.S. Wicha, and M. Long, Extracellular matrix promotes the growth and differentiation of murine hematopoietic cells in vitro. The Journal of clinical investigation, 1985. 75(6): p. 2085-2090.
76. Chen, S.S., et al., Cell‐cell and cell‐extracellular matrix interactions regulate embryonic stem cell differentiation. Stem cells, 2007. 25(3): p. 553-561.
77. Schnaper, H.W. and H.K. Kleinman, Regulation of cell function by extracellular matrix. Pediatric Nephrology, 1993. 7(1): p. 96-104.
78. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chemical reviews, 2012. 112(8): p. 4507-4540.
79. Jia, J., et al., Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. Science advances, 2020. 6(28): p. eaaz5894.
80. Jia, J., et al., Engineering alginate as bioink for bioprinting. Acta biomaterialia, 2014. 10(10): p. 4323-4331.
81. Zhou, P., et al., Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface. Colloids and Surfaces B: Biointerfaces, 2018. 171: p. 451-460.
82. Zhou, P., et al., Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials, 2016. 87: p. 1-17.
83. Chen, K.G., et al., Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell stem cell, 2014. 14(1): p. 13-26.
84. Deng, Y., et al., Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly (OEGMA-co-HEMA) brushes under fully defined conditions. Acta biomaterialia, 2013. 9(11): p. 8840-8850.
85. Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature methods, 2010. 7(12): p. 989-994.
86. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature biotechnology, 2010. 28(6): p. 606-610.
87. Hirano, Y., et al., Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines. Journal of Biomaterials Science, Polymer Edition, 1993. 4(3): p. 235-243.
88. Pierschbacher, M.D. and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984. 309(5963): p. 30-33.
89. Cooke, M., et al., Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2010. 93(3): p. 824-832.
90. Nomizu, M., et al., Cell binding sequences in mouse laminin α1 chain. Journal of Biological Chemistry, 1998. 273(49): p. 32491-32499.
91. Jia, J., et al., Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta biomaterialia, 2016. 45: p. 110-120.
92. Higuchi, A., et al., Polymeric materials for ex vivo expansion of hematopoietic progenitor and stem cells. Journal of Macromolecular Science®, Part C: Polymer Reviews, 2009. 49(3): p. 181-200.
93. Oldberg, A., et al., Identification of a bone sialoprotein receptor in osteosarcoma cells. Journal of Biological Chemistry, 1988. 263(36): p. 19433-19436.
94. Salasznyk, R.M., et al., Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedicine and Biotechnology, 2004. 2004(1): p. 24-34.
95. Suzuki, S., et al., Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. The EMBO journal, 1985. 4(10): p. 2519-2524.
96. Buhleier, E., W. Wehner, and F. Vogtle, Synthesis of molecular cavity topologies. Synthesis, 1978. 2: p. 155-158.
97. Liang, C.O. and J.M. Fréchet, Incorporation of functional guest molecules into an internally functionalizable dendrimer through olefin metathesis. Macromolecules, 2005. 38(15): p. 6276-6284.
98. McElhanon, J.R. and D.V. McGrath, Toward chiral polyhydroxylated dendrimers. Preparation and chiroptical properties. The Journal of Organic Chemistry, 2000. 65(11): p. 3525-3529.
99. Antoni, P., et al., Bifunctional dendrimers: from robust synthesis and accelerated one‐pot postfunctionalization strategy to potential applications. Angewandte Chemie, 2009. 121(12): p. 2160-2164.
100. Hermanson, G.T., Bioconjugate techniques. 2013: Academic press.
101. Maiti, P.K., et al., Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules, 2004. 37(16): p. 6236-6254.
102. Araújo, R.V.d., et al., New advances in general biomedical applications of PAMAM dendrimers. Molecules, 2018. 23(11): p. 2849.
103. Janaszewska, A., et al., Cytotoxicity of dendrimers. Biomolecules, 2019. 9(8): p. 330.
104. Caminade, A.-M., et al., Phosphorus dendrimers: from synthesis to applications. Comptes Rendus Chimie, 2003. 6(8-10): p. 791-801.
105. Kesharwani, P., et al., PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today, 2015. 18(10): p. 565-572.
106. Rao, C. and J.P. Tam, Synthesis of peptide dendrimer. Journal of the American Chemical Society, 1994. 116(15): p. 6975-6976.
107. Esfand, R. and D.A. Tomalia, Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug discovery today, 2001. 6(8): p. 427-436.
108. Chen, Y.-M., et al., Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Scientific reports, 2017. 7(1): p. 1-16.
109. Higuchi, A., et al., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Scientific reports, 2015. 5(1): p. 1-16.
110. Muduli, S., et al., Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides. Journal of Polymer Engineering, 2017. 37(7): p. 647-660.
111. Sung, T.-C., et al., Human pluripotent stem cell culture on polyvinyl alcohol-co-itaconic acid hydrogels with varying stiffness under xeno-free conditions. JoVE (Journal of Visualized Experiments), 2018(132): p. e57314.