跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李岳壇
Yueh-Tan Li
論文名稱: 多時期衛星影像之自動化監督性分類
Automatic Supervised Classification of Multi-temporal Satellite Images
指導教授: 陳繼藩
Chi-Farn Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 95
中文關鍵詞: 監督性模糊分類多時期衛星影像
外文關鍵詞: supervised fuzzy classification, multi-temporal satellite images
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在衛星遙測技術的發達及取得衛星影像方便的情況下,獲取衛星影像是件容易的事,但困難的卻是在處理衛星影像的技術上。如何能對衛星影像進行精確及方便的分類,是為重要的課題之一。本研究即是以監督性模糊分類的方法,以自動化萃取訓練區方式,對多時期但同地區的衛星影像進行分類。
    在監督性的分類方法中,通常需要圈選訓練資料。但如有連續不同時段同地區所拍攝的數張衛星影像,作監督性分類時,以人工方式對每張衛星影像圈選訓練區是件費時且費工的動作。本研究即發展出僅需對第一時期衛星影像選取訓練區並分類,爾後同地區的衛星影像即不需再以人工方式圈選訓練區,而改以自動化方式取得各時期衛星影像所需訓練區的資料,然後進行分類。
    利用前時期的分類影像對後時期的衛星影像進行分類時,自動化的選取訓練區,會因後時期衛星影像類別位置、個數及內容的變化而造成訓練區資料的不足或混雜,因此本研究將針對此種變化情況,進行探討及謀求解決的方法。
    解決的重點在於如何利用各訓練區的協方差矩陣和平均值來判斷後時期衛星影像是否有增多或減少的類別,進而利用模糊訓練區的特性,達到分類的目的。本研究以模擬資料及實際的SPOT影像作測試,結果得到相當好的分類成果,預期可對多時期衛星影像的自動化分類,提供一具實際應用的方法。



    methods of classification are very important. Therefore, this study aims at supervised fuzzy classification of multi-temporal images in the same area, choosing training set automatically.
    Training data are necessary for supervised classification. But it is manpower- and time-consuming to choose training data manually, especially in multi-temporal images in the same area. For this reason, a concept is proposed: choosing training set and finishing classification in first-period images, then following period images would be proceeded automatically.
    But the positions, number and contents of class changes in following-period images would influence results of classification. This problem is studied and solutions are researched in this paper. The key-point is "how to judge with covariance matrix and fuzzy mean if the classes of following-period images change or not". Simulated data and real SPOT images are tested, and results are obtained, so a practical method for automatic classification of multi-temporal images is expected.

    目錄 目錄.................................................I 圖目錄.................................................III 表目錄.................................................V 中文摘要.................................................VIII 英文摘要..................................................IX 第一章 緒論................................................1 1-1 前言 ............................................1 1-2 研究動機.........................................2 1-3 研究內容與文獻回顧...............................2 1-4 論文架構.........................................4 第二章 後時期衛星影像訓練區選取之演算法則..................5 2-1 前言.............................................5 2-2 模糊集合理論.....................................6 2-3 監督式模糊分類法.................................8 2-4 監督式模糊分類法處理流程.........................9 2-5 自動化選取訓練區的方法..........................12 2-6 DB指標..........................................13 2-7 模糊距離........................................15 第三章 對所有可能發生的後時期衛星影像隨機選取訓練區......17 3-1 前言............................................17 3-2 後時期衛星影像不同前時期可能產生的情況..........17 3-3 對於五種情況進行分析............................22 3-3-1 Case 1 類別總數不變、類別內容不變、類別位置改變...22 3-3-2 Case 2 類別總數不變、類別內容改變、類別位置不變...22 3-3-3 Case 3 類別總數不變、類別內容改變、類別位置改變...23 3-3-4 Case 4 類別個數增多...............................24 3-3-5 Case 5 類別個數減少...............................25 3-4 研究進行流程....................................25 第四章 成果分析..........................................28 4-1 前言............................................28 4-2 模擬影像測試....................................28 4-3 模擬衛星影像測試................................49 4-4 實際影像測試....................................71 第五章 結論與展望........................................79 6-1 結論............................................79 6-2 建議與展望......................................81 參考文獻..................................................83

    ISOCLS使用者手冊,1994,國立中央大學太空遙測中心衛星遙測實驗室。
    徐守道,『應用非監督性類神經網路於SPOT以像分類最佳化之研究』,國立中央大學土木工程研究所碩士論文,中壢,1995。
    劉孝恆,『監督性模糊分類法用於遙測影像分類及變遷偵測之研究』,國立中央大學土木工程研究所碩士論文,中壢,1999。
    Binaghi, E., P. A. Brivio, P. Ghezzi , A. Rampini , E. Zilioli , ”A Hybrid Approach to Fuzzy Land Cover Mapping”, Pattern Recognition Letters,17,pp.1399~1410, 1996.
    Canters, F. ,”Evaluating the Uncertainty of Area Estimates Derived from Fuzzy Land-Cover Clssification”,Photogrammetric Enginneering & Remote Sensing ,Vol. 63,No. 4,pp.403~414, 1997.
    Chetty, P. R. K., Satellite Technology and Its Applications,Blue Ridge Summit,PA:Tab Professional and Reference Books, 1991.
    DAVID L. DAVIES AND DONALD W. BOULDIN“A Cluster Separation Measure”, IEE Trans. Patt. Anal. Machine Intell. , vol . PAMI-1 , NO. 2, April 1979。
    Eckhardt, D. W. , J. P. Verdin , G. R. Lyford ,”Automated Update of an Irrigated Lands GIS Using SPOT HRV Imagery”, Photogrammetric Enginneering & Remote Sensing ,Vol. 56,No. 11,pp.1515~1522, 1990.
    Fisher, P. F. , S. Pathirana ,”The Evaluation of Fuzzy Membership of Land Cover Classes in the Suburban Zone”,REMOTE SENS ENVIRON,34,pp.121-132, 1990.
    Foddy, G. M., M. K. Arora, ”Incorporating Mixed Pixels in the Training ,Allocation and Testing Stages of Supervised Classification”,Pattern Recognition Letters,17,pp.1389~1398, 1996.
    Foody, G. M., J. Zhang , ”A Fuzzy Classification of Sub-Urban Land Cover from Remotely Sensed Imagery”, International Journal of Remote Sensing,Vol. 19,No. 14,pp.2721~2738, 1998.
    Fuller, R. M. , G. B. Groom, A. R. Jones , ”The Land Cover Map of Great Britain : An Automated Classification of Landsat Themetric Mapper Data”, Photogrammetric Enginneering & Remote Sensing ,Vol. 60,No. 5,pp.553~562, 1994.
    Jensen, J. R., K. Rutchey, M. S. Koch, S. Narumalani , ”Inland Wetland Change Detection in the Everglades Water Conservation Area Using a Time Series of Normalized Remotely Sensed Data”, Photogrammetric Enginneering & Remote Sensing ,Vol. 61,No. 2,pp.199~209, 1995.
    Key, J. R., J. A. Maslanik, and R. G. Barry, ”Cloud Classification from Satellite Data Using a Fuzzy Sets Algorithm:A polar example”,International Journal of Remote Sensing,10,pp.1823~1842, 1989.
    Lillesand,T. M. ,and R. W. Kiefer, 1994. Remote Sensing and Image Interpretation,John Wiley & Sons,Inc., Third Edition.
    Michener, W. K., P. F. Houhoulis, ”Detection of Vegetation Changes Associated with Extensive Flooding in a Forested Ecosystem”, Photogrammetric Enginneering & Remote Sensing ,Vol. 63,No. 12,pp.1363~1374,1997 .
    Ridd, M. K. and J. Liu, “A Comparison of Four Algorithms for Change Detection in an Urban Environment”,Remote Sens. Environ ,vol.63, pp. 95~100, 1998 ,
    Richards, J. A., ”Remote Sensing Digital Image Analysis”, Springer-Verlag Berlin Heidelberg, New York, 1986.
    Stow, D. A ., L. R. Tinney, and J. E. Estes, “Deriving Land Use/Land Cover Change Statistics form Landsat: A Study of Prime Agricultural Land,”Proceedings of the 14th International Symposium on Remote Sensing of Environment, pp. 1227-1237, 1980.
    Wang, F, ”Fuzzy Supervised Classification of Remote Sensing Images”,IEEE Transactions on Geoscience and Remote Sensing,Vol 28,No 2,pp194~201, 1990.
    Zadech, L A., ”Fuzzy Sets”Information and Control,8:pp.338~353, 1965.

    QR CODE
    :::