跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張光宇
Kuang-Yu Chang
論文名稱: 氮氣分子在45-100 nm之光吸收、光離子化、光解離
Photoabsorption, photoionization, and photodissociation of N2 in the wavelength region 45-100 nm
指導教授: 倪簡白
J.B. Nee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 96
語文別: 中文
論文頁數: 99
中文關鍵詞: 氮氣光吸收光離子化光解離
外文關鍵詞: N2, Photoabsorption, photoionization, photodissociation
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文的實驗我們使用了新竹同步輻射中心Seya,U9,以及High Flux光束線 ,使用光電倍增管測量紫外-可見光(180-650 nm)和真空紫外光(115-320nm )的螢光光譜和吸收光譜。我們這次實驗得到超高解析度的真空紫外螢光光譜,這光譜是由雷德堡態的氮氣中性分子轉變成帶一正電的激發態氮氣離子C 2Σu+ nsσg n= 4, 5態和D2Πgi nlλ態,最後再經由C-X和D-A的機制放光。實驗所得到的光譜,我們都會對照氮氣吸收光譜進行驗證比較。
    在氮氣光譜的歷史中,我們第一次能夠利用同步輻射光源和multichannel plate(MCP)、position sensitive detector(PSD),清楚地直接觀察到激發態氮氣分子c4’(0)和b(1)態產生的共振螢光,還有藉由光解碎片產生的氮原子放光。說到原子放光,同樣利用MCP偵測光分解產生的激發態氮原子(2P, 4P, 4D)產生的 98 nm 到 150 nm特定波長的原子放光。最後,我們在論文中作光譜的整理和總結並討論其產生的原因。


    Our experiment is aimed to investigate, including for the nitrogen absorption and fluorescence in the 45-60 nm region, atomic emission in particular wavelengths from 46.4 to 61.7 nm, and nitrogen resonance fluorescence of c4’(0) and b(1) states.
    We employed the light source at the Seya, U9 and high flux beamlines of National Synchrotron Radiation Research Center in Hsin-Chu, and measure two channels of fluorescence and one of nitrogen absorption in uv-visible (180-650 nm) and VUV (115-320nm ) by using PMTs. In 12-25 eV, the VUV fluorescence, observed clearly in higher resolution than one of P. Erman, is produced by the Codling Rydberg states, converging to C 2Σu+ nsσg state with n= 4, 5 of N2+ C-X emission and D2Πgi nlλ state with n=3 of N2+ D-A emission. All these spectra are compared with the absorption spectrum in 45-50 nm and 50-55 nm regions that we focus.
    In the history of nitrogen spectra, we observed directly resonance fluorescence of c4’(0) and b(1) state and atomic emission produced by the photofragment with the combination of the multichannel plate(MCP) and position sensitive detector(PSD) at the synchrotron radiation facility. Speaking of atom emission, it is also shown on MCP in some particular wavelengths from 98 nm to 150 nm when excited nitrogen atoms (2P, 4P, 4D) are produced. Finally, we conclude the cause and find the result of the spectra in this thesis.

    第一章前言..................................................1 1-1.實驗背景介紹............................................1 1-2. N2+的電子組態..........................................2 1-3.雷德堡態(Rydberg state)的計算...........................6 1-4.45~75 nm主要譜系.......................................7 1-4-1.C2Σu+-X2Σg+ second negative system of N2+ (22.3~12.7 nm) .......................................7 1-4-2. D2Πg-A2Πu Janin-d’Incan System of N2+ (205~307 nm) ........................................10 1-4-3. Codling Rydberg series (49-55.5 nm).........................................10 第二章儀器與實驗步驟.......................................15 2-1.同步輻射光源簡介.......................................15 2-2.同步輻射光源實驗系統簡介(Seya, U9-CGM,HF-CGH) .......16 2-2-1.Seya光束線...........................................16 2-2-2.U9光束線.............................................19 2-2-3.High Flux光束線......................................24 2-3.同步輻射光之波長校正...................................27 2-4.實驗系統的真空.........................................37 第三章數據處理.............................................39 3-1. 同步輻射光譜 (40~70 nm)數據的處理.....................39 3-1-1.吸收光譜的取得.......................................39 3-1-2.螢光光譜的取得.......................................40 第四章實驗結果與分析.......................................42 4-1.氮氣吸收光譜與吸收截面.................................42 4-2.以45~70 nm同步輻射光激發氮氣所得之螢光光譜.............45 4-2-1. C2Σu+-X2Σg+ second negative system and (C2Σu+)←X2Σg+ Codling Rydberg series of N2+.......45 4-2-2.D2Πg-A2Πu Janin-d’Incan System of N2+ (205~307 nm) ........................................53 4-3.利用同步輻射光和MCP系統偵測氮原子放光..................57 4-4.氮氣共振螢光(Resonance Fluorescence) ..................71 第五章結論.................................................80 參考資料...................................................82

    1. J. Phys. Chem. Ref. Data. 6, no.1(1977)
    2. Deslandres, H., C. R. Acad. Sci. (Paris) 134, 747-750(1902)
    3. Deslandres, H., and d’Azambuja, L., C. R. Acad. Sci. (Paris) 157, 671-678(1913)
    4. Schumann, V., Smithsonian Institute, Smithsonian Contributions to Knowledge. NO. 1413(1903)
    5. Lyman, T., Astrophys. J. 33, 98-107(1911)
    6. Lyman, T., (Longmans Green, London, 1928)
    7. Birge, R. T., and Hopfield, J. J., Nature (London) 116, 15(1925)
    8. Birge, R. T., Hopfield, J. J., Astrophys. J. 68, 257-278(1928)
    9. Dressler, K., Can. J. Phys. 47, 547-561(1969)
    10. Carroll, P. K., and Collins, C. P., Can. J. Phys. 47, 563-589(1969)
    11. Carroll, P. K., and Yoshino, K., J. Phys. B. 3, L127-L131(1970)
    12. Lefebver-Brion, H., Can. J. Phys. 47, 541-545(1969)
    13. Wu, C. Y. R., Lee, L. C. and Judge, D. L., J. Chem. Phys. 80(10)
    14. Erman, P., et al. J. Phys. B: At. Mol. Opt. Phys. 26(1993) 4483-4490
    15. Mulliken, R. S., (Pergamon Press, New York, 1957). P.169-179
    16. Gilmore, F. R., J. Quant. Spectrosc. Radiant. Transfer 5, 369-390(1965)
    17. Guerin, F., Theor. Chim. Acta 17, 97-108(1970)
    18. Stallcop, J. R., J. Chem. phys. 54, 2602-2605(1971)
    19. Hopfield, J. J., Phys. Rev. 36, 789-90(1930)
    20. Watson, W. W., and Koontz, P. G., Phys. Rev. 46, 32-37(1934)
    21. Setlow, R. B., Phys. Rev. 74, 153-162(1948)
    22. Baer, P., and Miescher, E., Nature (London) 169, 581(1952)
    23. Baer, P., and Miescher, E., Helv. Phys. Acta 26, 91-110(1953)
    24. Takamine, T., Suga, T., and Tanaka, Y., Sci. Pap. Inst. Phys. Chem. Res. (Tokyo) 36, 437-448 (1939).
    25. Wilkinson, P. G., Can. J. Phys. 34, 250-255(1956)
    26. Carroll, P. K., Can. J. Phys. 37, 880-889(1959)
    27. Joshi, K. C., Proc. Phys. Soc. (Lond.) 87, 285-292(1966)
    28. Watson, W.W., and Koontz, P. G., Phys. Rev. 46, 32-37(1934)
    29. Tanaka, Y., Namioka, T., and Jurse, A. S., Can. J. Phys. 39, 1138-1145(1961)
    30. Janin, J., and d’Incan, J., C. R. Acad. Sci. (Paris) 246, 3436-3439 (1959)
    31. Janin, J., and d’Incan, J., Revue Universelle des Mines 15(5), 1-4(1959)
    32. Namioka, T., Yoshino, K., and Tanaka, Y., J. Chem. Phys. 39, 2629-2633(1963)
    33. Broemer, H. H., Fette, K., and Hirsch, J., Z. Naturforsch. 20a, 643-646(1965)
    34. Weissler, G. L., Lee, P., and Mohr, E. I., J. Opt. Soc. Amer. 42,84-90(1952)
    35. Codling, K., Astrophys. J. 143, 552-558(1966)
    36. The handbook of Quantar Technology 3300/2400 Series Imaging Detector Systems
    37. Baltzer, P., Physical Review A, Vol.46 No.9(1992)
    38. Yoshii, H., Tanaka, T., J. Mol. Spectroscopy, 186, 155-161(1997)
    39. Codling, K., Astrophys. J. 143, 552(1966)
    40. Wu, C.Y.R., J. Geophys. Res., 111, A05301

    QR CODE
    :::