| 研究生: |
楊儒堯 Ru-Yao Yang |
|---|---|
| 論文名稱: |
即時性視訊訊務預測與頻寬協商機制於具服務品質保證之網路 Real-time video traffic prediction and bandwidth negotiation mechanism for QoS aware networks |
| 指導教授: |
張寶基
Pao-Chi Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 即時視訊訊務預測 、頻寬協商機制 |
| 外文關鍵詞: | bandwidth neotiation mechanism, real- time video traffic prediction |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網路上多媒體應用日益風行,即時性視訊的應用也逐漸成為矚目的焦點,然而視訊訊務對延遲以及封包遺失皆非常敏感,而且其資料流具有變動位元率的特性,又具有高變動的資料叢集現象,更因其為即時性的應用,無法事先得知訊務的分布特性,造成欲在網路上傳送即時視訊且要有良好的品質是件深具挑戰性的事。許多文獻提出各種即時性視訊訊務的預測技術,但很少討論到利用僅以預測的結果及該頻寬協商的機制,如何保證其畫面延遲並且符合使用者緩衝區容量大小的接受範圍之內。
在本篇論文中,我們針對即時性視訊服務提出一種新的即時性視訊訊務預測技術以及頻寬協商機制。即時性視訊訊務預測技術是依據畫面複雜度及偵測場景變換為基礎來做視訊訊務的預測,而頻寬協商機制則加入使用者緩衝區的使用限制,整合所提之視訊訊務預測技術並提出一套頻寬協商演算法則,使預測結果能同時滿足畫面延遲的限制以及使用者緩衝區的容量限制。實驗結果顯示,我們所提出的視訊訊務預測機制在畫面群位元率預測下,比傳統利用調適性最小錯誤均方線性預測器,可以減少10%至40%的預測錯誤量,更能利用簡單的參數設定,來調整重新協商次數與頻寬利用率的關係;而在使用者緩衝區的使用限制下,所提出的頻寬協商演算法確可在良好的頻寬利用率與合理的重新協商次數之下,滿足視訊訊務的延遲要求。
Variable bit-rate (VBR) compressed video traffic is difficult to manage because it has strict delay and loss requirements. In particular, we cannot attain the bandwidth requirements for future frames in real-time video applications. Therefore, it is necessary to use a traffic prediction algorithm to estimate how much bandwidth should be reserved. Up to now, many literatures have proposed many video traffic prediction methods for bandwidth reservation. However, client buffer constraint and delay requirements are not considered in these methods.
In this thesis, we propose a new video traffic prediction scheme and a bandwidth negotiation scheme for real-time video applications. The video traffic prediction scheme is based on picture complexity analysis. The bandwidth negotiation scheme is based on the client buffer size constraint and the predictions from the proposed video traffic prediction scheme. It must decide when to renegotiate its service rate and what the new service rate should be. The performance of the strategy is studied using renegotiated constant bit-rate (RCBR) network service model. Simulation results show that using the proposed prediction scheme for predicting GOP rates reduces the prediction errors from 10% to 40% as compared to the conventional methods. The proposed bandwidth negotiation scheme also achieves high bandwidth utilization with reasonable negotiation times.
[1]ISO/IEC JTC1/SC29/WG11, “MPEG-4 Video Verification Model version 18.0,” N3908, Jan. 2001.
[2]ISO/IEC JTC1/SC29/WG11, “Text of ISO/IEC 14496-2: 2001/COR2,” N5158, Oct. 2002.
[3]ISO/IEC JTC1/SC29/WG11, “MPEG-4 Visual: List of Problems Reported,” N5161, Oct. 2002.
[4]D. E. Wrege, E. W. Knightly, H. Zhang, and J. Liebeherr, “Deterministic Delay Bounds for VBR Video in Packet-Switching Networks: Fundamental Limits and Practical Trade-Offs,” IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 352-362, Jun. 1996.
[5]E. W. Knightly and H. Zhang, “D-BIND: An Accurate Traffic Model for Providing QoS Guarantees to VBR Traffic,” IEEE/ACM Transactions on Networking, vol. 5, no. 2, pp. 219-231, Apr. 1997.
[6]M. Grossglauser, S. Keshav, and D. Tse, “RCBR:A Simple and Efficient Service for Multiple Time-scale Traffic,” IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 741-755, Dec. 1997.
[7]A. M. Adas, “Using Adaptive Linear Prediction to Support Real-Time VBR Video Under RCBR Network Service Model,” IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 635-644, Oct. 1998.
[8]M. J. Lee and J. K. Kim, “Video Traffic Prediction Using Source Information for Renegotiated CBR,” IEE Electronics Letters, vol. 36, no. 25, pp. 2072-2073, 7th Dec. 2000.
[9]S. J. Yoo, “Efficient Traffic Prediction Scheme for Real-Time VBR MPEG Video Transmission Over High-Speed Networks,” IEEE Transactions on Broadcasting, vol. 48, no. 1, pp. 10-18, Mar. 2002.
[10]J. D. Salehi, Z. L. Zhang, J. Kurose, D. Towsley “Supporting Stored Video: Reducing Rate Variability and End-to-end Resource Requirements Through Optimal Smoothing,” IEEE/ACM Transactions on Networking, vol. 6, no. 4, pp. 397-410, Aug. 1998.
[11]S. Sen, J. L. Rexford, J. K. Dey, J. F. Kurose and D. F. Towsley, “Online Smoothing of Variable-Bit-Rate Streaming Video,” IEEE Transactions on Multimedia, vol. 2, no. 1, pp. 37-48, Mar. 2000.
[12]J. Rexford, S. Sen, J. Dey, W. Feng, J. Kurose, J. Stankovic, and D. Towsely, “Online smoothing of live, variable-bit-rate video,” in Proc. Workshop on Network and Operating System Support for Digital Audio and Video, pp. 235-243 May 1997.
[13]Z. He, S. K. Mitra, “Optimum Bit Allocation and Accurate Rate Control for Video Coding via ρ-Domain Source Modeling,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no. 10, pp. 840-849, Oct. 2002.
[14]A. M. Dawood, M. Ghanbari, “Content-Based MPEG Video Traffic Modeling,” IEEE Transactions on Multimedia, vol. 1, no. 1, pp. 77-87, Mar. 1999.
[15]W. A. C. Fernando, C. N. Canagarajah, and D. R. Bull, “Scene Change Detection algorithms for content-based video indexing and retrieval,” Electronics & Communication Engineering Journal, vol. 13, pp. 117-126, Jun. 2001.
[16]U. Gargi, R. Kasturi, and S. H. Strayer, “Performance characterization of video-shot-change detection methods,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, pp. 1-13, Feb. 2000.
[17]J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video Compression Standard, Chapman & Hall, 1997.
[18]R. Talluri, “Error-Resilient Video Coding in the ISO MPEG-4 Standard,” IEEE Communications Magazine, vol. 36, no. 6, pp. 112-119, Jul. 1998.
[19]R. Braden, L.Zhang, Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol (RSVP),” RFC 2205, Sep. 1997.
[20]S.Shenker, C.Partidge, and R. Guerin, “Specification of Guaranteed Quality of Service,” RFC 2212, Sep. 1997.
[21]M. Wu, R. A. Joyce, H. S. Wong, L. Guan, S. Y. Kung, “Dynamic Resource Allocation via Video Content and Short-Term Traffic Statistics,” IEEE Transactions on Multimedia, vol. 3, no. 2, pp. 186-199, Jun. 2001.
[22]國立交通大學資訊科學所, “Internet內容遞送的演進,” 網路通訊, 中華民國九十一年二月.
[23]黃能富 著, “區域網路與高速網路,” 維科出版社, 中華民國八十七年六月.
[24]S. Haykin, “Adaptive Filter Theory Fourth Edition,” Prentice-Hall, pp. 320-340, 2002.
[25]D. McDysan, “QoS & Traffic Management in IP & ATM Networks,” McGraw-Hill, pp. 43-55, 2000.