跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王綉華
Siou-hua Wang
論文名稱: Galectin-1 蛋白對小菜蛾的殺蟲活性及作用機制之研究
Insecticidal action of a mammalian Galectin-1 toward Plutella xylostella
指導教授: 黃榮南
Rong-nan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 96
語文別: 英文
論文頁數: 66
中文關鍵詞: Galectin-1 蛋白幾丁質圍食膜小菜蛾生物殺蟲劑
外文關鍵詞: Plutella xylostella bio-insecticide, chitin, Galectin-1, peritrophic membrane
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Galectins 是ㄧ類哺乳動物之醣類結合蛋白,可以專一性結合半乳糖。先前研究顯示,純化之重組 galectin-1 (GAL1) 蛋白可以干擾小菜蛾(Plutella xylostella) 正常生長發育;為了進一步探討 GAL1 發展成生物殺蟲劑之潛力,本研究深入研究 GAL1 蛋白殺蟲活性及其毒性作用機制。我們首先利用原二色光譜儀 (Circular Dichrosim) 研究 GAL1 在不同 pH及溫度的穩定性,結果發現 GAL1 在 pH 8~9 時較為穩定,而這相當接近於昆蟲腸道的鹼性環境;實驗結果也顯示 GAL1 在 50 0C下結構相對穩定。幾丁質 (Chitin) 及圍食膜 (Peritrophic membrane) 為目前生物殺蟲劑新標的,本實驗結果也證實 GAL1 可和幾丁質以及圍食膜結合。為了瞭解 GAL1 的應用潛力,本實驗成功篩選了 GAL1 的阿拉伯芥轉殖株 (包括全株表現 GAL1-Arabidopsis 及維管束專一性表現 GAL1-Arabidopsis-vas 轉殖株),於全株表現的轉殖株中,GAL1 表現量約占 0.5 % ~ 1 %;餵食試驗發現 GAL1-Arabidopsis 轉殖株對小菜蛾有明顯的殺蟲活性,包括存活率、平均體重及攝食量都有隨著時間而下降。而組織化學及免疫染色切片都顯示,小菜蛾的腸道都觀察到 GAL1 蛋白的存在 ; 而超微結構顯示,餵食 GAL1-Arabidopsis 轉殖株之小菜蛾腸道表皮細胞和微絨毛都呈現不正常的形態。掃描式電子顯微鏡結果顯示餵食 GAL1 的小菜蛾,其圍食膜都呈現被破壞的現象。此一實驗顯示 GAL1 對小菜蛾之毒性機制可能與幾丁質產生結合作用,而影響昆蟲圍食膜的結構,進而影響其正常發育;由本實驗結果顯示,GAL1 蛋白可以抑制小菜蛾幼蟲正常發育,並具有發展成為生物性殺蟲劑之潛力。


    Galectins (GALs) are a family of mammalian sugar-binding proteins specific for β-galactosides. Previous studies have shown that the larval development of Plutella xylostella are significantly disturbed when they are fed them with E. coli-expressed recombinant galectin-1 (GAL1). To explore the applicability of GAL1 as a bio-insecticide, the insecticidal activity and mechanism of GAL1 were further investigated. The circular dichrosim (CD) spectrum showed that the secondary structure of GAL1 was not affected under pH 8-9 or below 50 oC. These results indicated that GAL1 was workable in the midgut’s microenvironments of most insects (pH 8-9) and also thermo-stable below 50 oC. Besides, GAL1 could interact in vitro with chitin and peritrophic membrane (PM) that are the potential targets for new bio-insecticides development. Two GAL1 over-expressed Arabidopsis 【GAL1-Arabidopsis (whole plant) and GAL1-Arabidopsis-vas (vascular bundle-specific)】.These studies also screen for insecticidal activity and mechanism studies. The results showed that expression level of GAL1 in GAL1-Arabidopsis transformants ranges from 0.5 % ~ 1 % of total leaf soluble protein. The survival rate, body weight and food consumption were significantly decreased in a time-dependent manner in P. xylostella fed on GAL1-Arabidopsis. The results of histochemical structure and immunostaining suggested that GAL1 dose- and time-dependently bound to the midgut epithelium of P. xylostella fed on GAL1-containing diet or GAL1-Arabidopsis. The ultrastructural studies further showed the disruption of the microvilli and abnormalities in epithelial cells. The scanning electron micrographs showed no PM present in P. xylostella fed on GAL1-containing diet or GAL1-Arabidopsis. Inferred from these results, the insecticidal mechanism of GAL1 involves direct binding with chitin to interfere with the structure of the PM, and GAL1 could be a potential candidate for bio-insecticides development.

    Contents..............................................Ⅰ Figure Contents.......................................Ⅲ Abbreviations.........................................Ⅳ Introduction 1. Bio-insecticides....................................1 2. Plant lectins.......................................3 3. Peritrophic membrane................................6 4. Galectins...........................................9 5. Preliminary study and specific aims................11 Materials and Methods 1. Insect culture.....................................12 2. Over-expression and purification of GAL1 from E. coli…................................................12 3. Screening of GAL1-Arabidopsis transformants........13 4. Insect feeding trials..............................14 4.1 Insect bioassay on E. coli-expressed GAL1.........14 4.2 Insect bioassay on transgenic Arabidopsis.........14 5. Circular dichrosim spectrum of GAL1................15 6. Pull-down assay of GAL1 binding with chitin........16 7. Interaction of E. coli-expressed GAL1 with PM of P. xylostella in vitro................................16 8. Preparation and sectioning of larvae for light microscopy.........................................17 9. Histochemical staining of midgut section for carbohydrates......................................18 10. Immunocytochemistry for confocal laser scanning microscopy........................................18 11. Effect of GAL1-Arabidopsis on the ultrastructure of PM.............................................19 12. Cryosection and immunohistochemistry of GAL1- Arabidopsis leaves................................19 13. Electrophoresis and Western blotting..............20 14. Statistical analysis..............................21 Results 1. Structural stability of GAL1.......................22 2. Interaction of GAL1 with chitin in vitro...........22 3. Interaction of GAL1 with PM of P. xylostella in vitro..............................................23 4. Effect of GAL1 on the midgut ultrastructure of P. xylostella.........................................23 5. Effect of GAL1 on carbohydrate metabolism in P. xylostella.........................................24 6. Expression of GAL1 in transgenic GAL1-Arabidopsis and GAL1-Arabidopsis-vas...........................25 7. Effect of GAL1-Arabidopsis on survival, growth and food consumption of P. xylostella..................25 8. Effect of GAL1-Arabidopsis on midgut ultrastructure of larval P. xylostella............................27 9. Effect of GAL1-Arabidopsis on isolated PM of P. xylostella.........................................27 Discussion............................................29 Figures...............................................35 References............................................49 Appendix..............................................60

    Bandyopadhyay, S., Roy, A., and Das, S. (2001). Binding of garlic (Allium satium) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci. 161, 1025-1033.
    Bardocz, S., Grant, G., Ewen, S. W., Duguid, T. J., Brown, D. S., Englyst, K., and Pusztai, A. (1995). Reversible effect of phytohaemagglutinin on the growth and metabolism of rat gastrointestinal tract. Gut 37, 353-360.
    Barondes, S. H., Cooper, D. N., Gitt, M. A., and Leffler, H. (1994). Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 269, 20807-20810.
    Becker, J. W., Reeke, G. N., Jr, Wang, J. L., Cunningham, B. A., and Edelman, G. M. (1975). The Covalent and Three-Dimensional Structure of Concanavalin A. J. Biol. Chem. 250, 1513-1524.
    Binnington, K. C., Lehane, M. J., Beaton, C. D., Harrison, F. W., and Locke, M. (1998). The peritrophic membrane. In: Insecta. Micro Ana. Inverte. 11B, 747–758.
    Bradford, M. M. (1976). A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254.
    Brahms, S., Brahms, J., Spach, G., and Brack, A. (1977). Identification of ß ,ß -turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism. . Proc. Natl. Acad. Sci. U. S. A. 74, 3208-3212.
    Brewer, C. F. (1997). Cross-linking activities of galectins and other multivalent lectins. Trends. Glycosci. Glycotechnol. 9, 155–165.
    Brogdon, W. G., and McAllister, J. C. (1998). Insecticide resistance and vector control. Emerg. Infect. Dis. 4, 605-613.
    Carlini, C. R., and Grossi-de-Sá, M. F. (2002). Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon. 40, 1515-1539.
    Cerra, R. F., Haywood-Reid, P. L., and Barondes, S. H. (1984). Endogenous mammalian lectin localized extracellularly in lung elastic fibers. . J. Cell Biol. 98, 1580-1589.
    Chakrabarty, R., Viswakarma, N., Bhat, S. R., Kirti, P. B., Singh, B. D., and Chopra, V. L. (2002). Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J. Biosci. 27, 495-502.
    Chang, Y.-Y., Chen, S.-J., Liang, H.-C., Sung, H.-W., Lin, C.-C., and Huang, R.-N. (2004). The effect of galectin 1 on 3T3 cell proliferation on chitosan membranes. Biomaterials 25, 3603–3611.
    Chen, N.-T., and Huang, R.-N. (2005). Characterization of the insecticidal activity of galectin-1 on Plutella xylostella.
    Chen, Y., Baum, G., and Fromm, H. (1994). The 58-kilodalton calmodulin-binding glutamate decarboxylase is a ubiquitous protein in petunia organs and its expression is developmentally regulated. Plant Physiol. 106, 1381-1387.
    Chi, H. (1997). Computer Program for the Probit Analysis; National Chung Hsing University: Taichung, Taiwan.
    Chrispeels, M. J., and Raikhel, N. V. (1991). Lectins, lectin genes, and their role in plant defense. Plant Cell 3, 1-9.
    Cooper, D. N., and Barondes, S. H. (1999). God must love galectins; He made so many of them. Glycobiology 9, 979-984.
    Cooper, D. N., Massa, S. M., and Barondes, S. H. (1991). Endogenous muscle lectin inhibits myoblast adhesion to laminin. J. Cell Biol. 115, 1437-1448.
    Davidowitz, G., D''Amico, L. J., and Nijhout, H. F. (2003). Critical weight in development of insect body size. Evol. Dev. 5, 188-197.
    Ding, X., Gopalakrishnan, B., Johnson, L. B., White, F. F., Wang, X., Morgan, T. D., Kramer, K. J., and Muthukrishnan, S. (1998). Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res. 7, 77–84.
    Donatucci, D. A., Liener, I. E., and J., G. C. (1987). Binding of navy bean (Phaseolus vulgaris) lectin to the intestinal cells of the rat and its effect on the absorption of glucose. J. Nutr. 117, 2154-2160.
    Down, R. E., Gatehouse, A. M. R., Hamilton, W. D. O., and Gatehouse, J. A. (1996). Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trail. J. insect physiol. 42, 1035-1045.
    Drickamer, K. (1988). Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 263, 9557-9560.
    Einspahr, H., Parks, E. H., Suguna, K., Subramanian, E., and Suddath, F. L. (1986). The crystal structure of pea lectin at 3.0-A resolution. J. Biol. Chem. 261, 16518 - 16527.
    Feyereisen, R. (1995). Molecular biology of insecticide resistance. Toxicol. Lett., 82-83,83-90.
    Fitches, E., Gatehouse, A. M. R., and Gatehouse, J. A. (1997). Effect of snowdrop lectin (GNA) delievered via artificial diet and transgenic plants on the development of tomato moth (lacanobia oleracea) larvae in laboratory and glasshouse trails. J. Insect Physiol. 43, 727-739.
    Fitches, E., and Gatehouse, J. A. (1998). A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea). J. Insect Physiol. 44, 1213-1224.
    Fitches, E., Ilett, C., Gatehouse, A. M. R., Gatehouse, L. N., Greene, R., Edwards, J. P., and Gatehouse, J. A. (2001a). The effects of Phaseolus vulgaris erythro- and leucoagglutinating isolectins (PHA-E and PHA-L) delivered via artificial diet and transgenic plants on the growth and development of tomato moth (Lacanobia oleracea) larvae; lectin binding to gut glycoproteins in vitro and in vivo. J. Insect Physiol. 47, 1389-1398.
    Fitches, E., Wilkinson, H., Bell, H., Bown, D. P., Gatehouse, J. A., and Edwards, J. P. (2004). Cloning, expression and functional characterisation of chitinase from larvae of tomato moth (Lacanobia oleracea): a demonstration of the insecticidal activity of insect chitinase. Insect Biochem. Mol. Biol. 34, 1037-1050.
    Fitches, E., Woodhouse, S. D., Edwards, J. P., and Gatehouse, J. A. (2001b). In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action. J. Insect Physiol. 47, 777-787.
    Gatehouse, A. M. R., Dewey, F. M., Dove, J., Fenton, K. A., and Pusrtai, A. (1984). Effect of seed lectins from Phaseolus vulgaris on the development of larvae of Callosobruchus maculatus; mechanism of toxicity. . J. Sci. Food Agric. 35, 373-380.
    Gooday, G. W. (1997). The ever-widening diversity of chitinase. Carbohydr. Eur. 19, 18-22.
    Gopalakrishnan, B., Muthukrishnan, S., and Kramer, K. J. (1995). Baculovirus-mediated expression of a Manduca sexta chitinase gene:properties of the recombinant protein. . Insect Biochem. Mol. Biol. 25, 255–265.
    Gu, M., Wang, W., Song, W. K., Cooper, D. N., and Kaufman, S. J. (1994). Selective modulation of the interaction of a7b1 integrin with fibronectin andlaminin by L-14 lectin during skeletal muscle differentiation. J. Cell Sci. 107, 175-181.
    Habibi, J., Backus, E. A., and Czapla, T. H. (1998). Subcellular effects and localization of binding sites of phytohemagglutinin in the potato leafhopper, Empoasca fabae (Insecta: Homoptera: Cicadellidae). Cell Tissue Res. 294, 561-571.
    Habibi, J., Backus, E. A., and Huesing, J. E. (2000). Effects of phytohemagglutinin (PHA) on the structure of midgut epithelial cells and localization of its binding sites in western tarnished plant bug, Lygus hesperus Knight. J. Insect Physiol. 46, 611-619.
    Harper, M. S., Hopkins, T. L., and Czapla, T. H. (1998). Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae. Tissue Cell 30, 166-176.
    Held, G. A., Kawanishi, C. Y., and Huang, Y. S. (1989). Characterization of the parasporal inclusion of Bacillus thuringiensis subsp. kyushuensis. J. Bacteriol. 172, 481-483.
    Hirabayashi, J., and Kasai, K. (1991). Effect of amino acid substitution by site-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa b-galactoside-binding lectin. J. Biol. Chem. 266, 23648-23653.
    Ho, M.-R., Lou, Y.-C., Lin, W.-C., Lyu, P.-C., Huang, W.-N., and Chen, C. (2006). Human pancreatitis-associated protein forms fibrillar aggregates with a native-like conformation. J. Biol. Chem. 281, 33566-33576.
    Ho, M. (1917). Life history of Plutella maculipennis, the diamond-back moth. J. Apicul. Res. 10, 1-10.
    Hopkins, T. L., and Harper, M. S. (2001). Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch. Insect Biochem. Physiol. 47, 100-109.
    Hughes, R. C. (2001). Galectins as modulators of cell adhesion. Biochimie. 83, 667-676.
    Janzen, D. H., Juster, H. B., and Liener, I. E. (1976). lnsecticidal action of the phytohemagglutinin in black beans on a bruchid beetle. Science 192, 795-796.
    Jouanin, L., Bonadé-Bottino, M., Girard, C., Morrot, G., and Giband, M. (1998). Transgenic plants for insect resistance. Plant Sci. 131, 1-11.
    Kabir, K. E., Sugimoto, H., Tado, H., Endo, K., Yamanaka, A., Tanaka, S., and Koga, D. (2006). Effect of Bombyx Mori chitinase against Japanese Pine Sawyer (Monochamus alternatus) adult as a biopesticide. Biosci. Biotechnol. Biochem. 70, 219-229.
    Kaur, M., Singh, K., Rup, P. J., Kamboj, S. S., Saxena, A. K., Sharma, M., Bhagat, M., Sood, S. K., and Singh, J. (2006). A tuber lectin from arisaema jacquemontii blume with anti-insect and anti-proliferative properties. J. Biochem. Mol. Biol. 39, 432-440.
    Kordás, K., Burghardt, B., Kisfalvi, K., Bardocz, S., Pusztai, A., and Varga, G. (2000). Diverse effects of phytohaemagglutinin on gastrointestinal secretions in rats. J. Physiol. Paris 94, 31-36.
    Kramer, K. J., and Muthukriahnan, S. (1997). Insect chitinase: Molecular biology and potential use as biopesticides. Insect Biochem. Mol. Biol. 27, 887-900.
    Lehane, M. L. (1997). Peritrophic matrix structure and function. Annu. Rev. Entomol. 42, 525-550.
    Liao, D.-I., Kapadia, G., Ahmed, H., Vasta, G. R., and Herzberg, O. (1994). Structure of S-lectin, a developmentally regulated vertebrate beta-galactosidebinding protein. Proc. Natl. Acad. Sci. U. S. A. 91, 1428– 1432.
    López-Lucendo, M. F., Solís, D., André, S., Hirabayashi, J., Kasai, K., Kaltner, H., Gabius, H. J., and Romero, A. (2004). Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the ermodynamics of ligand binding. J. Mol. Biol. 343, 957-570.
    Loris, R., Maes, D., Poortmans, F., Wyns, L., and Bouckaert, J. (1996). A structure of the complex between concanavalin A and methyl-3,6-di-O-(a-d-mannopyranosyl)-a-d-mannopyranoside reveals two binding modes. J. Biol. Chem. 271, 30614–30618.
    Maeda, H., and Ishida, N. (1967). Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J. Biochem. 62, 276-278.
    Martin, T., Frommer, W. B., Salanoubat, M., and Willmitzer, L. (1993). Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of suceose both during phloem loading and in sink organs. J. Plant 4, 367-377.
    Mirelman, D., Galun, E., Sharon, N., and Lotan, R. (1975). lnhibition of fungal growth by wheat germ agglutinin. . Nature 256, 414-416.
    Moiseeva, E. P., Spring, E. L., Baron, J. H., and de Bono, D. P. (1999). Galectin-1 modulates attachment, spreading and migration of cultured vascular smooth muscle cells via interactions with cellular receptors and components of extracellular matrix. . J. Vasc. Res. 36, 47-58.
    Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. . Physiol. Plant 15, 473-479.
    Naismith, J. H., and Field, R. A. (1996). Structural basis of trimannoside recognition by concanavalin A. J. Biol. Chem. 271, 972–976.
    Nicholson, G. M. (2007). Fighting the global pest problem: Preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon. 49, 413-442.
    Ozeki, Y., Matsui, T., Yamamoto, Y., Funahashi, M., Hamako, J., and Titani, K. (1995). Tissue fibronectin is an endogenous ligand for Galectin-1. Glycobiology 5, 255-261.
    Pechan, T., Cohen, A., Williams, W. P., and Luthe, D. S. (2002). Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. U. S. A. 99, 13319-13323.
    Peferoen, M. (1997). Progress and prospects for field use of Bt genes in crops. . Trends Biotech. 15, 173-177.
    Peng, J., Zhong, J., and Granados, R. R. (1999). A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae. J. Insect Physiol. 45, 159-166.
    Peters, W., and Heitmann, S. (1979). Formation and fine structure of peritrophic membranes in the earwig, Forficula auricularia. Entomol. Gen. 5, 241-254.
    Peumans, W. J., and Van Damme, E. J. (1995). Lectins as plant defence proteins. . Plant Physiol. 109, 347-352.
    Powell, K. S., Gatehouse, A. M. R., Hilder, V. A., and Gatehouse, J. A. (1993). Antimetabolic effects of plant-lectins and plant and fungal enzymes on the nymphal stages of 2 important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol. Exp. Appl. 66, 119-126.
    Powell, K. S., Spence, J., Bharathi, M., Gatehouse, J. A., and Gatehouse, A. M. R. (1998). Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Sta°l). J. Insect Physiol. 44, 529-539.
    Pusztai, A., Ewen, S. W., Grant, G., Brown, D. S., Stewart, J. C., Peumans, W. J., Van Damme, E. J., and Bardocz, S. (1993). Antinutritive effects of wheat-germ agglutinin and other Nacetylglucosamine-specific lectins. Br. J Nutr. 70, 313-321.
    Pusztai, A., Ewen, S. W. B., Grant, G., Peumans, W. J., Damme, E. J. M., Coates, M. E., and Bardocz, S. (1995). Lectins and also bacteria modify the glycosylation of gut surface receptors in the rat. Glycoconj. J. 12, 22-35.
    Ramkumar, R., and Podder, S. K. (2000). Elucidation of the mechanism of the interaction of sheep spleen Galectin-1 with splenocytes andits role in cell–matrix adhesion. J. Mol. Recognit. 13, 299-309.
    Rao, R., Fiandra, L., Giordana, B., De Eguileor, M., Congiu, T., Burlini, N., Arciello, S., Corrado, G., and Pennacchio, F. (2004). AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Insect Biochem. Mol. Biol. 34, 1205-1213.
    Reeke, G. N., Jr, Becker, J. W., and Edelman, G. M. (1975). The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure. J. Biol. Chem. 250, 1525 - 1547.
    Richards, A. G., and Richards, P. A. (1977). The peritrophic membranes of insects. Ann. Rev. Entomol. 22, 219-240.
    Rini, J. M., and Lobsanov, Y. D. (1999). New animal lectin structures. Curr. Opin. Struct. Biol. 9, 578-584.
    Sadeghi, A., Broeders, S., De Greve, H., Hernalsteens, J. P., Peumans, W. J., Van Damme, E. J., and Smagghe, G. (2007). Expression of garlic leaf lectin under the control of the phloem-specific promoter Asus1 from Arabidopsis thaliana protects tobacco plants against the tobacco aphid (Myzus nicotianae). Pest Manag. Sci. 63, 1215-1223.
    Sadeghi, A., Smagghe, G., Broeders, S., Hernalsteens, J. P., De Greve, H., Peumans, W. J., and Van Damme, E. J. (2008). Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) protect transgenic tobacco plants against cotton leafworm (Spodoptera littoralis). Transgenic Res. 17, 9-18.
    Saha, P., Majumder, P., Dutta, I., Ray, T., Roy, S. C., and Das, S. (2006). Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta. 223, 1329-1343.
    Sauvion, N., Nardon, C., Febvay, G., Gatehouse, A. M. R., and Y., R. (2004). Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. J. Insect Physiol. 50, 1137-1150.
    Schuler, T. H., Poppy, G. M., Kerry, B. R., and Denholm, I. (1998). Insect-resistant transgenic plants. Trends Biotech. 16, 168-175.
    Shapiro, M., and Robertson, J. L. (1992). Enhancement of gypsy moth Lepidoptera Lymantriidae baculovirus activity by optical brighteners. J. Eton. Entomol. 85, 1120-1124.
    Sharma, H. C., Sharma, K. K., and Crouch, J. H. (2004). Genetic transformation of crops for insect resistance: potential and limitations. Crit. Rev. Plant Sci. 23, 47-72.
    Shelton, A. M., Tang, J. D., Roush, R. T., Metz, T. D., and Earle, E. D. (2000). Field tests on managing resistance to Bt-engineered plants. Nat. Biotechnol. 18, 339-342.
    Shelton, A. M., Zhao, J. Z., and Roush, R. T. (2002). Economic, ecological, food safety, and social consequences of the development of Bt transgenic plants. Ann. Rev. Entomol. 47, 845-881.
    Szewczyk, B., Hoyos-Carvajal, L., Paluszek, M., Skrzecz, I., and Lobo de Souza, M. (2006). Baculoviruses-- re-emerging biopesticides. Biotechnol. Adv. 24, 143-160.
    Tellam, R. L., Wijffels, G., and Willadsen, P. (1999). Peritrophic matrix proteins. . Insect Biochem Mol Biol. 29, 87-101.
    Terra, W. R. (2001). The origin and function of the insect peritrophic membrane and peritrophic gel. . Arch. Insect Biochem. Physiol. 47, 47-61.
    Tribulatti, M. V., Mucci, J., Cattaneo, V., Agüero, F., Gilmartin, T., Head, S. R., and Campetella, O. (2007). Galectin-8 induces apoptosis in the CD4highCD8high thymocyte subpopulation. Glycobiology 17, 1404-1412.
    Udedibie, A. B. I., and Carlini, C. R. (1998). Questions and answers to edibility problem of the Canavalia ensiformis seeds—a review. Anim. Feed Sci. Tech. 74, 95-106.
    Van Frankenhuyzen, K., Gringorten, J. L., Milne, R. E., Gauthier, D., Pusztai, M., Brousseau, R., and Masson, L. (1991). Specificity of activated CryIA proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for defoliating Forest Lepidoptera. Appl. Environ. Microbiol. 57, 1650-1655.
    Wang, P., and Granados, R. R. (1997a). An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Nat. Aca. Sci. (U.S.A.) 94, 6977-6982.
    Wang, P., and Granados, R. R. (1997b). Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J. Biol. Chem. 272, 16663–16669.
    Wang, P., and Granados, R. R. (2000). Calcofluor disrupts the midgut defense system in insects. Insect Biochem. Mol. Biol. 30, 135-143.
    Wang, P., and Granados, R. R. (2001). Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch. Insect Biochem. Physiol. 47, 110-118.
    Wang, P., Hammer, D. A., and Granados, R. R. (1994). Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects. J. Gen. Virol. 75, 1961-1967.
    Wary, K. K., Mariotti, A., Zurzolo, C., and Giancotti, F. G. (1998). A requirment for caveolin-1 and associated kinase Fyn in integrin signalling and anchorage-dependent cell growth. . Cell 94, 6250-6254.
    Wasano, K., Hirakawa, Y., and Yamamoto, T. (1990). Immunohistochemical localization of 14 kDa beta-galactoside-binding lectin in various organs of rat. Cell Tissue Res. 259, 43-49.
    Whetstone, P. A., and Hammock, B. D. (2007). Delivery methods for peptide and protein toxins in insect control. Toxicon. 49, 579-596.
    Wood, H. A., and Granados, R. R. (1991). Genetically engineered baculoviruses as agents for pest control. Annu. Rev. Microbiol. 45, 69-87.
    Zhou, Q., and Cummings, R. D. (1993). L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch. Biochem. Biophys. 300, 6-17.

    QR CODE
    :::