跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林育弘
Yu-Hung Lin
論文名稱: 應用於寬頻無線網路中動態競爭時槽環境下的平滑傳輸競爭機制
Smooth P-persistence based Dynamic Contention period mechanism for WiMAX
指導教授: 吳曉光
Hsiao-kuang Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 54
中文關鍵詞: 競爭時槽無線寬頻網路802.16
外文關鍵詞: dynamic contention period, p-persistence, 802.16
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來對於像視訊傳輸以及網路電話等講求高品質的網路傳輸需求與日俱增,為因應這樣的環境需求,IEEE 802.16就是針對都會型區域網路所提出的無線寬頻網路傳輸摽準。在IEEE 802.16的MAC標準中,網路傳輸的效能會被一個傳輸幀(frame)中競爭時槽的長度所影響,如果競爭時槽的時間太長,將會影響到一個傳輸幀中的資料傳輸時間,造成傳輸空間的浪費。為了減少這個問題的發生,我們根據一個傳輸幀中所能傳輸資料的空間,動態的調整每個傳輸幀中競爭時槽的長短,同時為了讓這個動態競爭時槽的機制能配合802.16網路穩定運作,我們使用了p-persistence的競爭機制,然而這個機制在短競爭時槽的環境下,很容易發生浪費傳輸幀中資料傳輸空間的情形,所以我們提出了一個平滑的p-persistence競爭機制來改善這個問題,並透過網路模擬的實驗,證明我們的方法在動態變動時槽的環境下擁有比原先的機制更佳更穩定的網路效能。


    Demands for a mobile communication and a high quality service such as video steaming or VoIP have been increasing in recent years. According to these social environments, IEEE 802.16 standard for BWA (Broadband Wireless Access) systems was proposed to supports a metropolitan area network architecture. In IEEE 802.16 MAC protocol, the performance of the system is affected by the size of the contention period, a long contention period would be a waste of transmission space. To reduce this problem, we dynamic change the length of the contention period according to the transmission space. In order to let our dynamic contention period mechanism work more stably. We choose the p-persistence scheme to be our contention mechanism.
    Unfortunately, even if the p-persistence scheme is stable enough, BS may receive no requests during a frame and result in the waste of transmission space under short contention period situation. To solve this problem, we propose a smooth p-persistence contention scheme. The experiment results show that our scheme unrolls better performance than original algorithm under dynamic contention period situation.

    Table of Contents Abstract ii Table of Contents iii List of Figures vi 1 Introduction 1 1.1 Wireless network and 802.16 1 1.2 IEEE 802.16 systemarchitecture 1 1.3 QoS support in 802.16 3 1.4 Contention structure 5 1.4.1 The length allocation of contention period 5 1.4.2 The contention scheme 6 1.4.3 Organization of this thesis 7 2 Related Work 9 2.1 the length allocation of contention period 9 2.1.1 dynamic contention period according to thenumber of active SSs 9 2.1.2 dynamic contention period according to transmission space 10 2.2 The contention scheme 12 2.2.1 Binary Exponential Back-off system 12 2.2.2 p-persistence algorithm 14 2.2.3 Adaptive p-persistence 15 3 smooth p-persistence 17 3.1 Slot utilization problem 17 3.2 Smooth p-persistence contention scheme 18 3.3 The contention slot utilization of p-persistence 21 3.4 Dynamic contention period mechanism 23 4 Experimental Results 25 4.1 contention slot utilization 25 4.2 performance improvement under different contention period 28 4.3 The stability between different contention schemes 32 4.4 Dynamic VS Fix contention period 34 5 Conclusion and Future Work 39 List of References 41

    List of References
    [1] “Ieee 802.11e/d5.0, draft supplement to part 11: Wireless
    medium access control (mac) and physical layer (phy) specifications:
    Medium access control (mac) enhancements for quality of service(qos).”
    June 2003.
    [2] “Ieee std 802.11a-1999, part11: Wireless lan medium access control
    (mac) and physical layer (phy)specifications: High speed physical layer
    in the 5ghz band..” 1999.
    [3] Carl Eklund and Roger B. Marks and Kenneth L. Stanwood and
    Stanley Wang, ”IEEE Standard 802.16:A Technical Overview of
    the WirelessMAN. Air Interface for Broadband Wireless Access”,
    IEEE Communications Magazine, Vol 40, pp. 98-107, June. 2002.
    [4] IEEE Computer Society LAN MAN Standards Committee,
    ”IEEE Std 802.11: Wireless LAN Medium Access Control and
    Physical Layer Specifications”, Aug. 1999.
    [5] IEEE 802.16-2001,”IEEE Standard for Local and Metropolitan
    Area Networks - Part 16: Air Interface for Fixed Broadband
    Wireless Access Systems”, Apr 2002.
    [6] M. Hawa and D. W. Petr, “Quality of service scheduling in cable
    and broadband wireless access system,” Tenth IEEE International
    Workshop on Quality of Service, pp. 247-255 May 2002.
    [7] D. W. G. Chu and S. Mei, “A qos architecture for the mac protocol
    of ieee 802.16 bwa system,” IEEE Intl Conference, vol 1,
    pp.435-439, July 2002.
    [8] W. J. Jianfeng Chen and H. Wang, “A service flow management
    strategy for ieee 802.16 broadband wireless access systems in tdd
    mode,” IEEE International Conference on Communications, vol
    5, pp.3422 - 3426, May 2005.
    [9] M.-S. K. Dong-Hoon Cho, Jung-Hoon Song and K.-J. Han, “A
    service flow management strategy for ieee 802.16 broadband wireless
    access systems in tdd mode,” Proceedings of the First International
    Conference on Distributed Frameworks for Multimedia
    Applications, pp.130 - 136, Feb 2005.
    [10] W. J. Jianfeng Chen and Q. Guo, “An integrated qos control
    architecture for ieee 802.16 broadband wireless access systems,”
    Global Telecommunications Conference, vol 5, pp.6 - 12, Dec 2005.
    [11] K.Wongthavarawat and A. Ganz, “Packet scheduling for qos support
    in ieee 802.16 broadband wireless access systems,” International
    Journal of Communication Systems, Vol. 16, pp. 81-96,
    2003.
    [12] “Telecommunications and advanced services provided by the cable
    television industry.” National Cable Television Association,
    April 1996.
    [13] S.-M. Oh and J.-H. Kim, “The analysis of the optimal contention
    period for broadband wireless access network,” PerCom 2005
    Workshops, vol 8-12, pp. 215 - 219, March 2005.
    [14] C. T. L. Inc., “Data-over-cable service interface specifications.”
    Radio Frequency Interface Specification, April 2004.
    [15] Y. Lin, W. Yin, and C. Huang, “An investigation into hfc mac
    protocols: Mechanisms, implementation, and research issues.”
    IEEE Communications Surveys, vol.3, no.3, third quarter 2000.
    [16] K. Sriram and P. Magill, “Enhanced throughput efficiency by use
    ofdynamically variable request minis- lots in mac protocols for
    hfc andwireless access networks,” Telecommun. Systems: Special
    Issue on Multimedia, vol. 9, pp. 315 - 333, 1998.
    [17] M. Hawa and D. Petr, “Quality of service scheduling in cable and
    broadband wireless access systems,” Tenth IEEE International
    Workshop on Quality of Service, pp. 247 - 255, May 2002.
    [18] Y. S. N. Golmie and D. Su, “A review of contention resolution
    algorithms for ieee 802.14 networks,” Cable Modems: Current
    Technologies and Applications, IEEE Press, pp. 233 - 260, 1999.
    [19] K. Sriram, “Performance of mac protocols for broadband hfc and
    wireless access networks,” Advances in Performance Analysis,
    Vol. 1, No. 1, pp. 1 - 37, 1998.
    [20] F. Cali, M. Conti, and E. Gregori, “Dynamic tuning of the
    ieee 802.11 protocol to achieve a theoretical throughput limit,”
    IEEE/ACM Transactions on Networking , vol. 8, pp. 785 - 799,
    Dec. 2000.
    [21] W.-K. Kuoa, S. Kumarb, and C.-C. J. Kuoa, “Dynamic collision
    resolution and traffic scheduling for docsis systems with qos support.”
    Global Telecommunications Conference, Vol 7, pp. 3894 -
    3898, Dec. 2003.
    43
    [22] W.-K. Kuo, S. Kumar, and C.-C. Jay Kuo, “Improved priority
    access, bandwidth allocation and traffic scheduling for docsis cable
    networks.” IEEE Transactions on Broadcasting, Vol 49, pp.
    371 - 382, Dec. 2003.
    [23] L. Bononi, M. Conti, and E. Gregori, “Runtime optimization of
    ieee 802.11 wireless lans performance,” IEEE Transactions on
    Parallel and Distributed Systems, Vol. 15, pp. 66-80, Jan. 2004.
    [24] M. C. L. Bononi and L. Donatiello, “Desig and performance evaluation
    of a distributed contention control mechanism for bee 802.11
    wireless local area networks,” J. Parallel and Distributed Computing,
    vol. 60, no. 4, Apr. 2000.
    [25] S.-M. Oh and J.-H. Kim, “The optimization of the collision resolution
    algorithm for broadband wireless access network.” Advanced
    Communication Technology. ICACT 2006. The 8th International
    Conference, Vol 3, pp. 1944 - 1948, Feb. 2006.
    [26] R. Rivest, “Network control by bayesian broadcast.” IEEE Transactions
    on Information Theory, Vol 33, pp.323-328, May 1987.
    [27] R. Citta, D. lin, and C. Lee, “Phase 2 simulation results for adaptive
    random access protocol.” IEEE802.14-96/114, IEEE 802.14.
    Working Group meeting, May 1996.
    [28] http://www.isi.edu/nsnam/ns/.

    QR CODE
    :::