| 研究生: |
張任廷 Jen-Ting Chang |
|---|---|
| 論文名稱: |
硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討 A study on the kinetics of thiosulfate based autotrophic denitrification and the behaviour of nitrite accumulation |
| 指導教授: |
莊順興
Shun-Hsing Chuang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 自營性脫硝 、硫代硫酸鹽 、S/N 比 、亞硝酸鹽氮累積 |
| 外文關鍵詞: | Autotrophic denitrification, Thiosulfate, S/N ratio, Nitrite accumulation |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮為污水排放中常見物質,達一定濃度將使生態與人體造成危害,而我國法規以漸進式加嚴管制,從民國 110 年至 116 年期間將減少氨氮 70% 放流濃度,氨氮經硝化反應後將轉換成硝酸鹽氮存在水中,目前大部分均採異營性脫硝反應將其轉換為氮氣,然而部分污水因碳源不足使其脫硝效果不佳,因此近年來興起自營性脫硝,以無機物作為電子供體,不需額外補充有機物,同時減少污泥產量。
本研究以硫代硫酸鹽作為電子供體,於長期試驗中進行 SBR 與 SBBR 反應性能比較,HDPE 生物擔體經 108 天馴養後,因擔體表面光滑使擔體間剪切力較強,導致生物膜產生量不盡理想,因此 SBBR 無法有效提升反應器內生物量與氮負荷。
批次試驗中以不同S/N 比進行特性探討,與長期試驗皆觀察到當硫代硫酸鹽充足時,將使歧化硫代硫酸鹽氧化反應(branched thiosulfate oxidation, BTO)發生,促使硫代硫酸鹽還原元素硫後累積於污泥表面,因此 S/N 莫耳比需大於理論值的 1.36 倍(2.19)以上才具有足夠的電子供體達完全脫硝,若 S/N 莫耳比降至理論值 1.1 倍(1.75),因歧化反應導致硫代硫酸鹽不足,部分亞硝酸鹽氮將使用累積元素硫進行反應,與硫代硫酸鹽相比,元素硫反應速率僅為其 0.17 倍。亞硝酸鹽氮的累積主要受到 S/N 比所控制,並且根據所使用還原性硫化物之反應特性將改變反應速率,於足夠 S/N 比下氮濃度變化呈 0 階反應,並隨著電子供體濃度下降,逐漸由 0.5 階轉變至 2 階反應。而本研究以單次進流進行試驗,因此不論 S/N 比的多寡,皆有歧化反應的進行,平均硫轉換率僅達 70%。
菌相組成中將試驗結束與初期相比,Thiobacillus 比例增加近一倍,Sulfurimonas 佔比下降 10%,自營脫硝菌群均佔 70%以上,亦有觀察到歧化反應菌群 Desulfobacterota,佔比 1.5%。
Nitrogen is a common substance found in wastewater discharges. When it reaches a certain concentration, it can cause harm to ecosystems and human health. In Taiwan, regulations have been progressively tightened. From the year 2021 to 2027, there will be a 70% reduction in the discharge concentration of ammonia. Ammonia undergoes nitrification and converts into nitrate, which exists in water as nitrate ions. Most wastewater treatment systems employ heterotrophic denitrification to convert nitrate into nitrogen gas. However, some wastewater treatment plants experience poor denitrification efficiency due to insufficient carbon sources. In recent years, autotrophic denitrification has gained popularity as it uses inorganic substances as electron donors, eliminating the need for additional organic matter and reducing sludge production.
In this study, thiosulfate was used as an electron donor to compare the performance of sequencing batch reactors (SBR) and sequencing biofilm batch reactors (SBBR) in long-term experiments. After 108 days of domestication, the HDPE biofilm carriers did not achieve the desired biofilm formation due to their smooth surface and strong shear forces between the carriers. Therefore, SBBR could not effectively increase the reactor's biomass and nitrogen loading rate.
In the batch test, the kinetics of the S/N ratio were investigated at different nitrogen loading rate. Both the long-term and batch test observed that when sufficient thiosulfate was present, the branched thiosulfate oxidation (BTO) reaction will occur. Resulting in the accumulation of elemental sulfur on the sludge surface after the reduction of thiosulfate.
Therefore, the S/N molar ratio needs to be maintained above 1.36 times (2.19) than theoretical value to provide enough electron donors for complete denitrification. If the S/N molar ratio decreases to 1.1 times than theoretical value (1.75), some nitrite will use accumulated elemental sulfur to reduce. Compared to thiosulfate, the reaction rate of elemental sulfur is only 0.17 times. In this study, single inflow experiments were conducted, so regardless of the S/N ratio, the BTO reaction occurred, resulting in an average sulfur conversion rate of only 70%. The accumulation of nitrite is mainly controlled by the S/N ratio and the characteristics of the different sulfur sources, which also alter microbial activity. Under sufficient S/N ratio, the change in nitrogen concentration follows zero-order kinetics, and as the electron donor concentration decreases, it gradually transitions to 0.5th t2nd-order kinetics.
In terms of microbial abundance, compared to the initial phase, Thiobacillus proportion increased by nearly twofold, while Sulfurimonas decreased by 10%. Autotrophic denitrifying bacteria accounted for more than 70%, and the presence of BTO bacteria Desulfobacterota was observed, accounting for 1.5% of the microbial community.
Bell, E., Lamminmäki, T., Alneberg, J., Qian, C., Xiong, W., Hettich, R. L., Frutschi, M., & Bernier-Latmani, R. (2022). Active anaerobic methane oxidation and sulfur disproportionation in the deep terrestrial subsurface. The ISME Journal, 16(6), 1583-1593.
Boon, A. (2003). Sequencing batch reactors: a review. Water and Environment Journal, 17(2), 68-73.
Burgin, A. J., & Hamilton, S. K. (2007). Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 5(2), 89-96.
Cai, J., Zheng, P., & Mahmood, Q. (2008). Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresource technology, 99(13), 5520-5527.
Campos, J., Carvalho, S., Portela, R., Mosquera-Corral, A., & Méndez, R. (2008). Kinetics of denitrification using sulphur compounds: effects of S/N ratio, endogenous and exogenous compounds. Bioresource technology, 99(5), 1293-1299.
Cao, W. (2015). Nitrogen removal from municipal wastewater by a bioreactor containing ceramic honeycomb. RSC Advances, 5(18), 14042-14046.
Cao, Y., Zhang, C., Rong, H., Zheng, G., & Zhao, L. (2017). The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR). Water Research, 108, 86-94.
Cardoso, R. B., Sierra‐Alvarez, R., Rowlette, P., Flores, E. R., Gomez, J., & Field, J. A. (2006). Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnology and bioengineering, 95(6), 1148-1157.
Chang, Y. J., Ho, C. M., Chang, C. C., & Tseng, S. K. (2006). Denitrification under high dissolved oxygen by a membrane‐attached biofilm reactor. Journal of the Chinese Institute of Engineers, 29(4), 741-745.
Cherchi, C., Onnis‐Hayden, A., El‐Shawabkeh, I., & Gu, A. Z. (2009). Implication of using different carbon sources for denitrification in wastewater treatments. Water Environment Research, 81(8), 788-799.
Chung, J., Amin, K., Kim, S., Yoon, S., Kwon, K., & Bae, W. (2014). Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Research, 58, 169-178.
Cui, Y.-X., Biswal, B. K., Guo, G., Deng, Y.-F., Huang, H., Chen, G.-H., & Wu, D. (2019). Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Applied microbiology and biotechnology, 103, 6023-6039.
Cui, Y.-X., Biswal, B. K., van Loosdrecht, M. C., Chen, G.-H., & Wu, D. (2019). Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. Water Research, 166, 115038.
Cui, Y.-X., Guo, G., Ekama, G. A., Deng, Y.-F., Chui, H.-K., Chen, G.-H., & Wu, D. (2019). Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal. Water Research, 162, 246-257.
Cui, Y.-X., Wu, D., Mackey, H. R., Chui, H.-K., & Chen, G.-H. (2018). Application of a moving-bed biofilm reactor for sulfur-oxidizing autotrophic denitrification. Water Science and Technology, 77(4), 1027-1034.
de la Vega, P. M., de Salazar, E. M., Jaramillo, M., & Cros, J. (2012). New contributions to the ORP & DO time profile characterization to improve biological nutrient removal. Bioresource technology, 114, 160-167.
Deng, Y.-F., Ekama, G. A., Cui, Y.-X., Tang, C.-J., van Loosdrecht, M. C., Chen, G.-H., & Wu, D. (2019). Coupling of sulfur (thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater. Water Research, 163, 114854.
Deng, Y.-F., Zan, F.-x., Huang, H., Wu, D., Tang, W.-t., & Chen, G.-H. (2022). Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: A review. Water Research, 119051.
Di Capua, F., Ahoranta, S. H., Papirio, S., Lens, P. N., & Esposito, G. (2016). Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus. Process Biochemistry, 51(10), 1576-1584.
Di Capua, F., Lakaniemi, A.-M., Puhakka, J. A., Lens, P. N., & Esposito, G. (2017). High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor. Chemical Engineering Journal, 310, 282-291.
Di Capua, F., Pirozzi, F., Lens, P. N., & Esposito, G. (2019). Electron donors for autotrophic denitrification. Chemical Engineering Journal, 362, 922-937.
Dincer, A. R., & Kargı, F. (2000). Kinetics of sequential nitrification and denitrification processes. Enzyme and microbial technology, 27(1-2), 37-42.
Ding, D., Feng, C., Jin, Y., Hao, C., Zhao, Y., & Suemura, T. (2011). Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination, 276(1-3), 260-265.
Dolejs, P., Paclík, L., Maca, J., Pokorna, D., Zabranska, J., & Bartacek, J. (2015). Effect of S/N ratio on sulfide removal by autotrophic denitrification. Applied microbiology and biotechnology, 99, 2383-2392.
Dominika, G., Joanna, M., & Jacek, M. (2021). Sulfate reducing ammonium oxidation (SULFAMMOX) process under anaerobic conditions. Environmental Technology & Innovation, 22, 101416.
Dong, Z., Lu, M., Huang, W., & Xu, X. (2011). Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. Journal of hazardous materials, 196, 123-130.
Dupla, M., Comeau, Y., Parent, S., Villemur, R., & Jolicoeur, M. (2006). Design optimization of a self-cleaning moving-bed bioreactor for seawater denitrification. Water Research, 40(2), 249-258.
Fajardo, C., Mosquera-Corral, A., Campos, J., & Méndez, R. (2012). Autotrophic denitrification with sulphide in a sequencing batch reactor. Journal of environmental management, 113, 552-556.
Fan, C., Zhou, W., He, S., & Huang, J. (2021). Sulfur transformation in sulfur autotrophic denitrification using thiosulfate as electron donor. Environmental Pollution, 268, 115708.
Fu, C., Li, J., Lv, X., Song, W., & Zhang, X. (2020). Operation performance and microbial community of sulfur-based autotrophic denitrification sludge with different sulfur sources. Environmental geochemistry and health, 42, 1009-1020.
Ge, S., Peng, Y., Wang, S., Lu, C., Cao, X., & Zhu, Y. (2012). Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO3-N. Bioresource technology, 114, 137-143.
Glass, C., & Silverstein, J. (1998). Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Research, 32(3), 831-839.
Han, Y., & Perner, M. (2015). The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Frontiers in Microbiology, 6, 989.
How, S. W., Nittami, T., Ngoh, G. C., Curtis, T. P., & Chua, A. S. M. (2020). An efficient oxic-anoxic process for treating low COD/N tropical wastewater: startup, optimization and nitrifying community structure. Chemosphere, 259, 127444.
Hu, M., Zhang, H., & Tian, Y. (2023). Achieving nitrogen removal with low material and energy consumption through partial nitrification coupled with short-cut sulfur autotrophic denitrification in a single-stage SBR. Bioresource technology, 128999.
Huang, S., Yu, D., Chen, G., Wang, Y., Tang, P., Liu, C., Tian, Y., & Zhang, M. (2021). Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal. Chemosphere, 278, 130413.
Irvine, R. L., & Ketchum, L. (2004). The sequencing batch reactor and batch operation for the optimal treatment of wastewater. SBR Technology Inc.
Jagaba, A. H., Kutty, S. R. M., Noor, A., Birniwa, A. H., Affam, A. C., Lawal, I. M., Kankia, M. U., & Kilaco, A. U. (2021). A systematic literature review of biocarriers: Central elements for biofilm formation, organic and nutrients removal in sequencing batch biofilm reactor. Journal of Water Process Engineering, 42, 102178.
James, S. N., & Vijayanandan, A. (2022). Anoxic-Aerobic-Anoxic sequencing batch reactor for enhanced nitrogen removal. Bioresource technology, 363, 127892.
Jing, C., Ping, Z., & Mahmood, Q. (2009). Simultaneous sulfide and nitrate removal in anaerobic reactor under shock loading. Bioresource technology, 100(12), 3010-3014.
Khanongnuch, R., Di Capua, F., Lakaniemi, A.-M., Rene, E. R., & Lens, P. N. (2019). Long-term performance evaluation of an anoxic sulfur oxidizing moving bed biofilm reactor under nitrate limited conditions. Environmental Science: Water Research & Technology, 5(6), 1072-1081.
Koenig, A., & Liu, L. (2001). Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Research, 35(8), 1969-1978.
Kostrytsia, A., Papirio, S., Morrison, L., Ijaz, U. Z., Collins, G., Lens, P. N., & Esposito, G. (2018). Biokinetics of microbial consortia using biogenic sulfur as a novel electron donor for sustainable denitrification. Bioresource technology, 270, 359-367.
Lee, H. W., Park, Y. K., Choi, E., & Lee, J. W. (2008). Bacterial community and biological nitrate removal: comparisons of autotrophic and heterotrophic reactors for denitrification with raw sewage. Journal of microbiology and biotechnology, 18(11), 1826-1835.
Lens, P., & Kuenen, J. G. (2001). The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Science and Technology, 44(8), 57-66.
Li, S., Mu, J., Du, Y., & Wu, Z. (2019). Study and application of real-time control strategy based on DO and ORP in nitritation–denitrification SBR start-up. Environmental technology.
Lim, J.-W., Seng, C.-E., Lim, P.-E., Ng, S.-L., & Sujari, A.-N. A. (2011). Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials. Bioresource technology, 102(21), 9876-9883.
Liu, L., & Koenig, A. (2002). Use of limestone for pH control in autotrophic denitrification: batch experiments. Process Biochemistry, 37(8), 885-893.
Liu, S., Xiang, Y., Zhou, T., Ma, H., Shao, Z., & Chai, H. (2022). Insight into thiosulfate-driven denitrification and anammox process: Bigger aggregates driving better nitrite utilization on ammonium and nitrate contained wastewater. Journal of Water Process Engineering, 47, 102669.
Liu, Y., Wang, Y., Fan, G., Su, X., Zhou, J., & Liu, D. (2021). Metagenomics reveals functional species and microbial mechanisms of an enriched thiosulfate-driven denitratation consortia. Bioresource technology, 341, 125916.
Lu, H., Huang, H., Yang, W., Mackey, H. R., Khanal, S. K., Wu, D., & Chen, G.-H. (2018). Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification. Water Research, 133, 165-172.
Manconi, I., Carucci, A., & Lens, P. (2007). Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnology and bioengineering, 98(3), 551-560.
Matos, M., Alves, C., Campos, J., Brito, A., & Nogueira, R. (2011). Sequencing batch biofilm reactor: from support design to reactor operation. Environmental technology, 32(10), 1121-1129.
MEIJER, E. M., VAN DER ZWAAN, J. W., STOUTHAMER, A. H., & WEVER, R. (1979). Anaerobic Respiration and Energy Conservation in Paracoccus denitrficans: Functioning of Iron‐Sulfur Centers and the Uncoupling Effect of Nitrite. European Journal of Biochemistry, 96(1), 69-76.
Mo, H., Oleszkiewicz, J., Cicek, N., & Rezania, B. (2005). Incorporating membrane gas diffusion into a membrane bioreactor for hydrogenotrophic denitrification of groundwater. Water Science and Technology, 51(6-7), 357-364.
Moon, H. S., Chang, S. W., Nam, K., Choe, J., & Kim, J. Y. (2006). Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification. Environmental Pollution, 144(3), 802-807.
Mora, M., Dorado, A. D., Gamisans, X., & Gabriel, D. (2015). Investigating the kinetics of autotrophic denitrification with thiosulfate: Modeling the denitritation mechanisms and the effect of the acclimation of SO-NR cultures to nitrite. Chemical Engineering Journal, 262, 235-241.
Moraes, B. d. S., Souza, T., & Foresti, E. (2012). Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochemistry, 47(9), 1395-1401.
Nisola, G. M., Redillas, M. C., Cho, E., Han, M., Yoo, N., & Chung, W.-J. (2011). Comparison of reactive porous media for sulfur-oxidizing denitrification of high nitrate strength wastewater. Biochemical engineering journal, 58, 79-86.
Oberoi, A. S., Huang, H., Khanal, S. K., Sun, L., & Lu, H. (2021). Electron distribution in sulfur-driven autotrophic denitrification under different electron donor and acceptor feeding schemes. Chemical Engineering Journal, 404, 126486.
Oh, S.-E., Kim, K.-S., Choi, H.-C., Cho, J., & Kim, I. (2000). Kinetics and physiological characteristics of autotrophic dentrification by denitrifying sulfur bacteria. Water Science and Technology, 42(3-4), 59-68.
Oh, S., Yoo, Y., Young, J., & Kim, I. (2001). Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. Journal of Biotechnology, 92(1), 1-8.
Patureau, D., Bernet, N., & Moletta, R. (1996). Effect of oxygen on denitrification in continuous chemostat culture with Comamonas sp SGLY2. Journal of Industrial Microbiology and Biotechnology, 16(2), 124-128.
Pishgar, R., Dominic, J. A., Sheng, Z., & Tay, J. H. (2019). Denitrification performance and microbial versatility in response to different selection pressures. Bioresource technology, 281, 72-83.
Qambrani, N. A., Jung, Y. S., Yang, J. E., Ok, Y. S., & Oh, S.-E. (2015). Application of half-order kinetics to sulfur-utilizing autotrophic denitrification for groundwater remediation. Environmental Earth Sciences, 73, 3445-3450.
Qian, J., Zhou, J., Zhang, Z., Liu, R., & Wang, Q. (2016). Biological nitrogen removal through nitritation coupled with thiosulfate-driven denitritation. Scientific reports, 6(1), 1-10.
Qian, W., Ma, B., Li, X., Zhang, Q., & Peng, Y. (2019). Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification. Bioresource technology, 278, 444-449.
Raboni, M., Viotti, P., Rada, E. C., Conti, F., & Boni, M. R. (2020). The sensitivity of a specific denitrification rate under the dissolved oxygen pressure. International Journal of Environmental Research and Public Health, 17(24), 9366.
Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications. McGraw-Hill Education.
Rusten, B., Eikebrokk, B., Ulgenes, Y., & Lygren, E. (2006). Design and operations of the Kaldnes moving bed biofilm reactors. Aquacultural engineering, 34(3), 322-331.
Rusten, B., & Wessman, F. (2004). State of the art in Europe of the moving bed biofilm reactor (MBBR) process. WEFTEC 2004,
Sabba, F., Terada, A., Wells, G., Smets, B. F., & Nerenberg, R. (2018). Nitrous oxide emissions from biofilm processes for wastewater treatment. Applied microbiology and biotechnology, 102, 9815-9829.
Sahinkaya, E., Dursun, N., Kilic, A., Demirel, S., Uyanik, S., & Cinar, O. (2011). Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production. Water Research, 45(20), 6661-6667.
Sahinkaya, E., Yurtsever, A., Aktaş, Ö., Ucar, D., & Wang, Z. (2015). Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chemical Engineering Journal, 268, 180-186.
Seidel, H., Wennrich, R., Hoffmann, P., & Löser, C. (2006). Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments. Chemosphere, 62(9), 1444-1453.
Shao, M.-F., Zhang, T., & Fang, H. H.-P. (2010). Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Applied microbiology and biotechnology, 88(5), 1027-1042.
Shao, M.-F., Zhang, T., Fang, H. H.-P., & Li, X. (2011). The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment. Chemosphere, 83(1), 1-6.
Shen, J., He, R., Han, W., Sun, X., Li, J., & Wang, L. (2009). Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of hazardous materials, 172(2-3), 595-600.
Shin, D.-c., Yoon, S.-c., & Park, C.-h. (2019). Biological characteristics of microorganisms immobilization media for nitrogen removal. Journal of Water Process Engineering, 32, 100979.
Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gómez, J., Razo-Flores, E., & Field, J. A. (2007). Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Research, 41(6), 1253-1262.
Simard, M.-C., Masson, S., Mercier, G., Benmoussa, H., Blais, J.-F., & Coudert, L. (2015). Autotrophic denitrification using elemental sulfur to remove nitrate from saline aquarium waters. Journal of Environmental Engineering, 141(12), 04015037.
Soares, M. (2002). Denitrification of groundwater with elemental sulfur. Water Research, 36(5), 1392-1395.
Soto, O., Aspé, E., & Roeckel, M. (2007). Kinetics of cross-inhibited denitrification of a high load wastewater. Enzyme and microbial technology, 40(6), 1627-1634.
Sparacino-Watkins, C., Stolz, J. F., & Basu, P. (2014). Nitrate and periplasmic nitrate reductases. Chemical Society Reviews, 43(2), 676-706.
Sun, H., Qing, Y., Yongzhen, P., Xiaoning, S., Shuying, W., & ZHANG, S. (2009). Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate. Chinese Journal of Chemical Engineering, 17(6), 1027-1031.
Sun, Y., & Nemati, M. (2012). Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. Bioresource technology, 114, 207-216.
Tadda, M. A., Altaf, R., Gouda, M., Rout, P. R., Shitu, A., Ye, Z., Zhu, S., & Liu, D. (2021). Impact of Saddle-Chips biocarrier on treating mariculture wastewater by moving bed biofilm reactor (MBBR): Mechanism and kinetic study. Journal of Environmental Chemical Engineering, 9(6), 106710.
Valdivia, A., Gonzalez-Martinez, S., & Wilderer, P. (2007). Biological nitrogen removal with three different SBBR. Water Science and Technology, 55(7), 245-254.
Vishniac, W., & Santer, M. (1957). The thiobacilli. Bacteriological reviews, 21(3), 195-213.
Wang, J.-J., Huang, B.-C., Li, J., & Jin, R.-C. (2020). Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. Chinese Chemical Letters, 31(10), 2567-2574.
Wang, Y., Bi, H.-Y., Chen, H.-G., Zheng, P.-F., Zhou, Y.-L., & Li, J.-T. (2022). Metagenomics Reveals Dominant Unusual Sulfur Oxidizers Inhabiting Active Hydrothermal Chimneys From the Southwest Indian Ridge. Frontiers in Microbiology, 13.
Ward, M. H., Jones, R. R., Brender, J. D., De Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, C. M., & Van Breda, S. G. (2018). Drinking water nitrate and human health: an updated review. International Journal of Environmental Research and Public Health, 15(7), 1557.
Xue, M., Nie, Y., Cao, X., & Zhou, X. (2022). Deciphering the influence of S/N ratio in a sulfite-driven autotrophic denitrification reactor. Science of The Total Environment, 836, 155612.
Yang, W., Lu, H., Khanal, S. K., Zhao, Q., Meng, L., & Chen, G.-H. (2016). Granulation of sulfur-oxidizing bacteria for autotrophic denitrification. Water Research, 104, 507-519.
Yang, Y., Gerrity, S., Collins, G., Chen, T., Li, R., Xie, S., & Zhan, X. (2018). Enrichment and characterization of autotrophic Thiobacillus denitrifiers from anaerobic sludge for nitrate removal. Process Biochemistry, 68, 165-170.
Yang, Y., Perez Calleja, P., Liu, Y., Nerenberg, R., & Chai, H. (2022). Assessing Intermediate Formation and Electron Competition during Thiosulfate-Driven Denitrification: An Experimental and Modeling Study. Environmental Science & Technology, 56(16), 11760-11770.
Yuan, Q., Wang, H., Hang, Q., Deng, Y., Liu, K., Li, C., & Zheng, S. (2015). Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent. Environmental Science and Pollution Research, 22, 13970-13979.
Yuan, Y., Li, X., Li, W., Shi, M., Zhang, M., Xu, P.-l., Li, B.-l., & Huang, Y. (2022). Effects of different reduced sulfur forms as electron donors in the start-up process of short-cut sulfur autotrophic denitrification. Bioresource technology, 354, 127194.
Zhang, M., Tan, Y., Fan, Y., Gao, J., Liu, Y., Lv, X., Ge, L., & Wu, J. (2022). Nitrite accumulation, denitrification kinetic and microbial evolution in the partial denitrification process: The combined effects of carbon source and nitrate concentration. Bioresource technology, 361, 127604.
Zhang, X., Wang, X., Feng, W., Li, X., & Lu, H. (2020). Investigating COD and Nitrate–Nitrogen Flow and Distribution Variations in the MUCT Process Using ORP as a Control Parameter. ACS omega, 5(9), 4576-4587.
Zhang, X., Zhang, N., Chen, Z., Ma, Y., Wang, L., Zhang, H., & Jia, J. (2019). Long-term impact of sulfate on an autotrophic nitrogen removal system integrated partial nitrification, anammox and endogenous denitrification (PAED). Chemosphere, 235, 336-343.
Zhu, Z., Qin, J., Chen, Z., Chen, Y., Chen, H., & Wang, X. (2022). Sulfammox forwarding thiosulfate-driven denitrification and anammox process for nitrogen removal. Environmental Research, 214, 113904.
Zia, K. M., Bhatti, H. N., & Bhatti, I. A. (2007). Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and functional polymers, 67(8), 675-692.
Zou, G., Papirio, S., Lakaniemi, A., Ahoranta, S., & Puhakka, J. (2016). High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chemical Engineering Journal, 284, 1287-1294.
內政部營建署下水道工程處. (2022). 110年度污水下水道統計要覽.
王公辰. (2021). 活性污泥異營與自營脫硝反應動力特性之研究 國立中央大學].
行政院環保署. (2019). 放流水標準.
行政院環保署. (2022). 飲用水水質標準.
張哲維. (2022). 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響 國立中央大學].