| 研究生: |
溫啟仲 Chi-Chung Wen |
|---|---|
| 論文名稱: |
現狀家庭數據在相關伽瑪致病傾向模型之無母數估計 Nonparametric Maximum Likelihood Estimation in the Correlated Gamma-Frailty Model with Current Status Family Data |
| 指導教授: |
張憶壽
I-Shou Chang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 概然函數比推論 、無母數估計 、相關伽瑪致病傾向模型 、現狀家庭數據 、漸近常態性 、漸近有效性 |
| 外文關鍵詞: | Correlated Gamma-Frai, Current Status Family Data |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
除此之外,我們也利用Empirical Process Theory及Approximately Least Favorable Submodel的相關理論來證明迴歸係數(Regression Coefficient)和致病傾向參數(Frailty Parameters)之NPMLE的漸近常態性(Asymptotic Normality)及漸近有效性(Asymptotic Efficiency)。為了求取Approximately Least Favorable Submodel,我們計算迴歸係數和致病傾向參數的Efficient Score Function。此Efficient Score Function為一積分方程的解。這裡,我們利用此積分方程中相關函數(為一Banach Space 上的Operator)的解析性,以Functional Analysis為主要工具證明Efficient Score Function的存在性。
最後,對於迴歸係數和致病傾向參數的假說檢定,我們證明在虛無假說下,Profile Likelihood Ratio Statistic的漸近分布是具有自由度3的卡方分布。對此,我們便可求得迴歸係數和致病傾向參數的信賴區域。
The identifiability of the parameters and the existence of NPMLE are established under certainregularity conditions. In addition to the asymptotic consistency, the asymptotic normality and efficiency of the NPMLE for the regression coefficient and frailty parameters are proved, and a convergence rate of the NPMLE for the baseline cumulative hazard function is established.
The profile likelihood ratio statistic for hypothesis testing and the related confidence regions for the regression coefficient and frailty parameters are also studied.
[1] Andersen, P.K., Borgan, O., Gill, R.D. and Keiding, N. (1993)
Statistical Model Based on Counting Processes.
New York: Springer-Verlag.
[2] Bickel, P., Klaassen, C., Ritov, Y. and Wellner, J. (1993)
Efficient and Adaptive Estimation for Semiparametric Models.
Baltimore, MD: John Hopkins University Press.
[3] Chang, I.S. and Hsiung, C.A. (1996)
An Efficient Estimator for Proportional Hazards Models with Frailties and Applications.
Scand. J. Statist., 23, 13-26.
[4] Huang, J. (1996)
Efficient Estimation for the Cox Model with Interval Censoring.
Ann. Statist., 24, 540-568.
[5] Huang, J. and Wellner, J.A. (1997)
Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis.}
New York: Springer-Verlag.
[6] Murphy, S.A. (1994)
Consistency in a Proportional Hazards Model Incorporating a Random Effect.
Ann. Statist., 22, 712-731.
[7] Murphy, S.A. (1995)
Asymptotic Theory for the Frailty Model.
Ann. Statist., 23, 182-198.
[8] Murphy, S.A. and van der Vaart, A.W. (1997)
Semiparametric Likelihood Ratio Inference.
Ann. Statist., 25, 1471-1509.
[9] Murphy, S.A. and van der Vaart, A.W. (1999)
Observed Information in Semiparametric Models.
Bernoulli, 5, 381-412.
[10] Murphy, S.A. and van der Vaart, A.W. (2000)
On Profile Likelihood.
J. Amer. Statist. Assoc., 95, 449-485.
[11] Nielsen, G. G., Gill, R. D., Andersen, P. K. and S{o}rensen, T. I. A. (1992)
A Counting Process Approach to Maximum Likelihood Estimation in Frailty Models.
Scand. J. Statist., 19, 25-44.
[12] Parner, E. (1998)
Asymptotic Theory for the Correlated Gamma-Frailty Model.
Ann. Statist., 26, 183-214.
[13] Pollard, D. (1984)
Convergence of Stochastic Processes.
New York: Springer-Verlag.
[14] Rudin, W. (1973)
Principles of Mathematical Analysis.
McGraw-Hill, New York.
[15] Rudin, W. (1976)
Functional Analysis.
McGraw-Hill, New York.
[16] van de Geer, S.A. (2000)
Empirical Processes in M-Estimation.
Gambridge.
[17] van der Vaart, A.W. and Wellner, J.A. (1996)
Weak Convergence and Empirical Processes.
Springer, New York.
[18] van der Vaart, A.W. (1998)
Asymptotic Statistics.
New York: Cambridge
University Press.