| 研究生: |
黃鈴珺 Ling-Chung Huang |
|---|---|
| 論文名稱: |
水平互層地盤之承載行為研究及承載力之預估 The bearing behavior of a horizontal layered mass and calculation of it capacity |
| 指導教授: | 葛德治 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 承載行為 、承載力 、數值分析 、剛性條形基礎 、互層地層 、FLAC 、類神經網路 |
| 外文關鍵詞: | bearing behavior, bearing capacity, numerical analysis, rigid strip foundation, two-layered formation, FLAC, neural networks analysis |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要以有限差分連續分析之套裝軟體-FLAC程式進行承載行為之探討。基礎加載是以應變控制為主,從荷重-沈陷曲線及擾動範圍找出極限承載力,其中擾動範圍是由位移向量圖所定義出。由Case A-硬砂岩下覆軟頁岩 (HS-SS);Case B-軟頁岩下覆硬砂岩 (SS-HS),可瞭解互層地盤之承載行為,砂頁岩分別代表典型的力學特性。此外,利用倒傳類神經網路發展廣義的互層地盤承載力評估公式,由FLAC模擬出不同地層參數資料共910組進行迴歸,參數範圍在摩擦角(f) = 0~30°,凝聚力(c) = 0~1 MPa之間,並考慮三種形式分別為無凝聚性、無凝聚性及凝聚性、凝聚性土壤互層,以建立評估公式。
結果顯示,硬砂岩下覆軟頁岩其極限承載力會隨層厚比之增加而增強,而軟頁岩下覆硬砂岩則減少,前者影響深度為4倍基礎寬度,而後者影響深度為2.5倍基礎寬度。上下層之凝聚力、摩擦角在某一深度內會影響極限承載力(並不是僅有每層之承載力會影響)。當類神經網路測試預估之偏差量小於10﹪時,則即建立起一正確互層地盤承載力之預估公式,另外,在線性分析中,可找出各種互層形式下之最大影響因子,例如:非凝聚性互層土壤-軟在上時,上層摩擦角為其最大影響因子。
The bearing behavior of such a mass was simulated by the FLAC code, in which finite-difference scheme is employed for both the spatial and time domains. The foundation loading mode used is strain-controlled, and the ultimate bearing capacity (qu) is determined from the loading versus settlement curve and the disturbed zone beneath the foundation is localized according to the displacement vector plots. For understanding the distinct bearing behavior of a two-layered formation system, two cases were selected: Case A with a hard sandstone layer (HS) of thickness (H1) overlying a soft shale (SS), and Case B with SS overlying HS, each material assigned with typical mechanical properties. Besides, the neural networks analysis with backward propagation algorithm (NNAB) was adopted to develop a general bearing capacity formulas for a two-layered formation system, and about nine hundreds of cases were run by FLAC with formation properties (for common soils): the friction angle (f) varying from 0 to 30° and cohesion (c) from 0 to 1MPa. Three situations were considered: both layers cohesionless, one cohesionless and another cohesive soils, and both cohesive.
The simulation results of HS-SS system show that qu increases with H until H approaches 4B for Case A, qu decreases with H until H approaches 2.5B for Case B, and both (f,c) values of two formations affect qu to some certain extent (but not merely qu of each formation). The NNAB established a fair predictive model of qu for a two-layered soil system, with a prediction error less than 10%. In its linear model analysis, the most influential factor for each situation was also identified, and for instance, such a factor is the friction angle of the top layer (f1) for a two-layered cohesionless system with a weaker top layer.
王乙翕 (2000) 「層狀岩盤之承載力」,碩士論文,國立中央大學土木工程研究所
洪如江 (1991) 「初等工程地質學大綱」,財團法人地工技術研究發展基金會
張俊雄 (1993) 「類神經網路在土木工程上之應用研究」,碩士論文,國立中央大學土木工程研究所
黃哲君 (1998) 「層狀土壤之基礎承載力」,碩士論文,國立中央大學土木工程研究所
梁至仁 (1999) 「層狀地層之承載力」,碩士論文,國立中大學土木工程研究所
Brady, B.H.G. and Brown, E.T. (1985) Rock Mechanics for Underground Mining, Chapman and Hall, London.
Bell, F. G. (1992) Engineering in Rock Masses, Butterworth — Heinemann, Oxford, 580p.
Bowles, J.E. (1988) Foundation Analysis and Design, 4th Edition, McGraw-Hill, New York.
Burd, H. J. and Frydman, S. (1997) “Bearing capacity of plane-strain footings on layered soils,” Can. Geotech. J., Vol. 34, No. 2, pp. 241~253.
Chen, W.F. and William O. McCarron (1990) , “Bearing Capacity of Shallow Foundations,” in Foundation Engineering Handbook, Chapter 4, Ed. By Fang, Hsai-Yang, 2nd Edition, Van Nostrand Reinhold, New York, pp. 144~165.
Das, B.M. (1984) Principal of Geotechnical Engineering Engineering, 3rd Edition PWS, Boston.
FLAC (1993) Fast Lagrangian Analysis of Continua, Volume 1: User’s Manual, Itasca Consulting Group Inc., USA.
FLAC (1993) Fast Lagrangian Analysis of Continua, Volume 2: Verification Problems and Example Applications, Itasca Consulting Group Inc., USA.
FLAC (1993) Fast Lagrangian Analysis of Continua, Volume 3: Appendices, Itasca Consulting Group Inc., USA.
Goodman, R.E. (1980) Introduction to Rock Mechanics, John Wiley & Sons, New York.
Jaeger, J.C. and Cook, N.G.W. (1969) Fundamentals of Rock Mechanics, Chapman and Hall, New York.
Hoek, E. and E. T. Brwon (1997) “Practical Estimates of Rock Mass Strength,” Int. J. Rock Mech. Mining Sci., Vol. 34, No. 8, pp. 1165~1186.
Hoek, E. (1990) “Estimating Mohr-Coulomb Friction and Cohesion Values from the Hoek-Brown Failure Criterion,” Int. J. Rock Mech. Mining Sci., Vol. 27, No. 3, pp. 227~229.
Hoek, E. (1983) “Strength of jointed rock masses,” Geotechnique, Vol. 33, No. 3, pp. 187~273.
Hanna, A.M. and G.G. Meyerhof(1979)“Ultimate Bearing Capacity of Foundations on a Three-layer Soil with Special Reference to Layered Sand,” Can. Geotech. J., Vol. 16, No. 2, pp. 412~414.
Hanna, A.M. and G.G. Meyerhof (1981) “Experimental Evaluation of Bearing Capacity of Footing Subjected to Inclined Loads,” Can. Geotech. J., Vol. 18, No. 2, pp. 599~603.
Holtz, R.O. (1990) “Stress Distribution and Settlement of Shallow Foundations,” in Foundation Engineering Handbook, Chapter 5, Ed. By Fang, Hsai-Yang, 2nd Edition, Van Nostrand Reinhold, New York, pp. 166~222.
Kenny, M. J. and Andrawes, K. Z. (1997) “The Bearing Capacity of Footings on Sand Layer overlying Soft Clay,” Geotecnique, Vol. 47, No. 2, pp. 339-345.
Myslivec, A. and kysela, Z. (1978) The Bearing Capacity of Building Foundations, Elsevier.
Meyerhof, G.G. (1974) “Ultimate Bearing Capacity of Footings on Sand Layer overlying Clay,” Can. Geotech. J., Vol. 11, No. 2,pp.223~229.
Merifield, R. S., Sloan, S. W. and Yu, H. S. (1999) “Rigorous plasticity solutions for the bearing capacity of two-layered clays,” Geotechnique, V. 49, No. 4, pp. 471-490
Pells, P.J.N. and R.M. Turner (1980) , “Endbearing on Rock with Particular Reference to Sandstone,” International Conference on Structural Foundations on Rock, Sydney, pp. 181~190.
Perkins, S. W. (1995) “Bearing Capacity of Highly Frictional Material ,” Geotechnical Testing Journal, GTJODJ, Vol. 18, No. 4, pp. 450-462.
Parndtl, L. (1920) Härte plashecher Körper, Nach. Ges. Wiss. Göttingen.
Reddy, A. S. and R. J. Srinivasan (1967) “Bearing Capacity of Footings on Layered Clays,” Journal of the Soil Mechanics and Foundations Division, Proceedings, ASCE, Vol. 93, No. SM2, pp. 83~99.
Sowers G.F. (1979) Introductory Soil Mechanics And Foundation, 4th Edition, Macmillan, New York.
Terzaghi, K. and Peck, R. B. (1967) Soil Mechanics in Engineering Practice, 2nd Edition, John Wiley & Sons, New York.
Terzaghi, K. (1943) Theoretical Soil Mechanics, Wiley, New York.
Taylor, D. W. (1948) Fundamentals of Soil Mechanics, John Wiley & Sons, New York.
Wyllie, D. C. (1992) Foundations on Rock, Chapman & Hall, London.