跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉尚府
Son-Fu Yeh
論文名稱: 高速傳輸連結網路的分析和模擬
Analysis and Simulation of High-Speed Interconnects Using Moment-Matching Technique
指導教授: 蘇朝琴
Chau-Chin Su
劉建男
Chien-Nan Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 91
語文別: 英文
論文頁數: 91
中文關鍵詞: 傳輸線信號完整性
外文關鍵詞: signal integrity, transmission line
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們首先簡短討論影響高速傳輸訊號的一些雜散效應如振盪、訊號延遲、失真、反射及串音干擾,並且介紹一些EDA 軟體如Ansoft Q3D Extractor、Hspice,提出一套分析方法,將封裝架 (package)做更細微的切割,並使用適當的傳輸線模型 (Transmission Line model)來做模擬,使其適用於探討封裝架構對高速數位訊號的影響。
    其次,「參數匹配法」(moment matching technique)被使用來加快模擬的速度.但在「參數匹配法」中,會因為傳輸線的長度而產生一些準確度的問題。本論文針對「參數匹配法」提供一個新的傳輸線模型來縮短整個估算法執行的過程,除此之外,我們也利用了數學的證明來驗證新的傳輸線模型確實能解決準確度的問題。我們分別以0.3m和0.5m的單條傳輸線為例。在0.3m的例子中,若RMS error要求為小於0.0046V,新的傳輸線模型只需6個極點和1個頻率展開點,而舊的傳輸線模型需要11個及點和11個頻率展開點。若以相同的極點數來看(6個) ,舊的傳輸線模型的RMS error為0.0165V,新的傳輸線模型的RMS error為0.0042V。在0.5m的例子中,若RMS error要求為小於0.0027V,新的傳輸線模型只需5個極點和1個頻率展開點,而舊的傳輸線模型需要19個及點和17個頻率展開點。若以相同的極點數來看(5個) ,舊的傳輸線模型的RMS error為0.0371V,新的傳輸線模型的RMS error為0.0027V


    In this thesis, we first introduce some electrical design automation (EDA) tool such as Ansoft Q3D Extractor and propose a new analytic method, which divide the package into small component and use W-element distributed model for the simulation. This method is suitable to explore the influence of package on high-speed digital signal.
    Second, moment matching technique (MMT) is used to improve the simulation efficiency. But there are some problems in MMT. When the length of lossy transmission line increases, the accuracy will deteriorate. In this thesis, we propose a new distributed transmission line model for MMT to shorten the complicated process. Besides, we also prove it in mathematics. For the case with 0.3m transmission line, to a demand on RMS error of less than 0.0046V, one method (modified MMT) needs only 6 poles and 1 hop while the original MMT requires 11 poles and 11 hops. For the same number poles (6 poles), the error of MMT is 0.0165V and modified MMT is 0.0042V. For the case with 0.5m transmission line, to a demand on RMS error of less than 0.0027V, one method (modified MMT) needs only 5 poles and 1 hop while the original MMT requires 19 poles and 17 hops. For the same number poles (5 poles), the error of MMT is 0.0371V and modified MMT is 0.0027V.

    Contents Contents ……………………. ii List of Tables …… iv List of Figures …… v Chapter 1 Introduction 1 1.1. Motivation 1 1.2. The Definition of High-Speed 3 1.3. Thesis Organization 4 Chapter 2 The Analysis Methodology for High-Speed System 5 2.1. High-Speed Interconnect Effects 6 2.1.1. Attenuation 6 2.1.2. Propagation Delay 6 2.1.3. Reflection 7 2.1.4. Crosstalk 9 2.2. EM Simulator and Transmission Line Model 11 2.2.1. Maxwell Q3D Extractor 11 2.2.2. Transmission Line model 12 2.3. High-Speed System Analysis 13 2.3.1. W-element 13 2.3.2. Partition technology 14 2.3.3. Simulation technology 16 2.3.4. Accuracy 18 Chapter 3 Asymptotic Waveform Evaluation 25 3.1. Moment-Matching Technique Flow 26 3.2. Modified Nodal Analysis Matrix (MNA) 28 3.3. Computation of Moments 32 3.4. Padé Approximation 35 3.5. Limitations of Single Expansion MMT Algorithms 37 3.6. Complex Frequency Hopping 38 3.7. Interface to Circuit Simulators 40 3.8. Experimental Results and Comparisons 41 Chapter 4 Modified Moment Matching Technique 49 4.1. The Pole Number and Propagation Delay 50 4.2. Modified Moment Matching Technique 57 4.3. Mathematical Proof 61 4.4. Simulation Result and Comparison 64 Chapter 5 Conclusion 75 Appendix ………… 76 Bibliography ….. 78

    [1] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI. Reading, MA:Addison-Wesley, 1990
    [2] H. W. Jhonson and M. Grahaml, High-Speed Digital Design. Englewood Cliffs, NJ: Prentice-Hall, 1993
    [3] M. Nakhla and R. Achar, High-Speed Circuit and Interconnect Analysis. Multimedia Learning Course, OT: Omniz Global Knowledge Corporation (www.omniz.com), 2001
    [4] R. K. Poon, Computer Circuits Electrical Design. Englewood Cliffs, NJ: Prentic-Hall, 1995
    [5] W. W. M. Dai, Guest Editor, “Special issue on simulation, modeling, and electrical design of high-speed and high-density interconnects.” IEEE Trans. Circuits Syst., vol. 39, pp. 857-982, Nov. 1992
    [6] M. Nakhla and A. Ushida, Guest Editors, “Special issue on modeling and simulation of high-speed interconnects,” IEEE Trans. Circuits Syst., vol. 47, pp. 239-305, Apr. 2000
    [7] E. Chiprout and M. Nakhla, Asymptotic Waveform Evaluation and Moment Matching for Interconnect Analysis. Boston, MA: Kluwer, 1993
    [8] A. Deustsch, “Electrical characteristics of interconnections for high-performance systems,” Proc. IEEE, vol. 86, pp. 315-355, Feb. 1998
    [9] R. Goyal, “Managing signal integrity,” IEEE Spectr., pp. 54-62, Mar. 1994
    [10] J. B. Faria, Multiconductor Transmission Line Structures. New York: Wiley, 1993
    [11] T. L. Quarles, “The SPICE3 implementation guide.” Univ. California, Berkeley, Tech. Rep., ERL-M89/44, 1989
    [12] K. Singhal and J. Vlach, “Computation of time domain response by numerical inversion of the Laplace transform.” J. Franklin Inst., vol.299, no.2, pp. 157-166, Feb. 1975.
    [13] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for timing analysis,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 352-366, Apr. 1990.
    [14] L. T. Pillage , “ Asymptotic waveform evaluation for timing analysis,” Res. Rep. No. CMUCAD-89-34, Carnegie-Mellon University.
    [15] X. Huang, “Pade approximation of linear(ized) circuit responses,” Ph.D. thesis, Carnegie Mellon Univ., Nov. 1990
    [16] X. Huang, V. Raghavan, and R. A. Rohrer, AWEsim: “A program for the efficient analysis of linear(ized) circuits,” In Proc. IEEE Int’l Conf. Computer-Aided Des., Nov. 1990
    [17] T. K. Tang and M. S. Nakhla, “Analysis of high-speed VLSI interconnects using the asymptotic waveform evaluation technique,” IEEE Trans. Computer-Aided Design, vol. 11, no. 3, Mar. 1992
    [18] S. Lin and E. S. Kuh, “Transient simulation of lossy interconnect.” In Proc. 29th ACM/IEEE Des. Auto. Conf., June. 1992
    [19] C. L. Ratzlaff, N. Gopal, and L. T. Pillage, “RICE: Rapid Interconnect Circuit Evaluator,” In Proc. 28th ACM/IEEE Design Automation Conf., June 1991.
    [20] S. Kumashiro, R. Rohrer, and A. Strojwas, “A new efficient method for the transient simulation of 3D interconnect structures,” IEDM Tech. Dig., 1990
    [21] C. T. Dikmen, M. M. Alaybeyi, S. Topcu, A. Atalar, E. Sezer, M. A. Tan, and R. A. Rohrer, “Piecewise linear Asymptotic Waveform Evaluation of transient simulation of electronic circuits.” In Proc. IEEE Int’l. Symp. Ckt. Sys., June 1991
    [22] A. C. Cangellaris, S. Pasha, J. L. Prince, and M. Celik, “A new discrete time-domain model for passive model order reduction and macromodeling of high-speed interconnections.” IEEE Trans. Comp., Package., Manufact. Technol., pp. 356-364, Aug. 1999
    [23] S.H. Hall, G.W. Hall, et al. , “High-Speed Digital System Design—A handbook of interconnect theory and design practices,” Wiley-Interscience Publication, 2000.
    [24] A. E. Ruehli, “Equivalent circuit models for three dimensional multiconductor systems,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 216-224, Mar. 1974.
    [25] P. K. Wolff and A. E. Ruehli, “Inductance computations for complex three dimensional geometries.” IEEE Trans. Circuits Syst., pp.16-19, 1981
    [26] Star-HSPICE User’s Manual , Avant! Corporation, 2001.
    [27] S. Kumashiro, R. A. Rohrer, and A. J. Strojwas, “Asymptotic waveform evaluation for transient analysis of 3-D interconnect structures,” IEEE Trans. Computer-Aided Design, vol. 12, no. 7, pp. 988-996, 1993
    [28] D. Xie and M. Nakhla, “Delay and crosstalk simulation of high speed VLSI interconnects with nonlinear terminations,” IEEE Trans. Computer-Aided Design, pp. 1798-1811, Nov. 1993.
    [29] S. Y. Kim, N. Gopal, and L. T. Pillage, “Time-domain macromodels for VLSI interconnect analysis,” IEEE Trans. Computer-Aided Design, vol. 13, pp.1257-1270, Oct. 1994.
    [30] T. Tang, M. Nakhla, and R. Griffith, “Analysis of lossy multiconductor transmission lines using the asymptotic waveform evaluation technique,” IEEE Trans. Microwave Theory Tech., vol. 39, Dec. 1991.
    [31] E. Chiprout and M. Nakhla, “Analysis of interconnect networks using complex frequency hopping,” IEEE Trans. Computer-Aided Design, vol. 14, pp. 186-199, Feb. 1995.
    [32] R. Sanaie, E. Chiprout, M. Nakhla, and Q. J. Zhang, “A fast method for frequency and time domain simulation of high-speed VLSI interconnects,” IEEE Trans. Microwave Theory Tech, vol. 42, pp. 2562-2571, Dec. 1994.
    [33] C. W. Ho, A. E, Ruehli, and P. A. Brennan, “The modified nodal approach to network analysis,” IEEE Trans. Circuits Syst., vol. CAS-22, pp. 504-509, June 1975.
    [34] R. Achar, M. S. Nakhla, “Simulation of high-speed interconnects,” Proceedings of the IEEE, vol. 89. pp. 693–728, May 2001.
    [35] A. Gruodis and C. Chang, “Coupled lossy transmission line characterization and simulation,” IBM J. Res. Develop., vol. 25, pp. 25-41, Jan. 1981.

    QR CODE
    :::