| 研究生: |
龍庭軒 Ting-Hsuan Long |
|---|---|
| 論文名稱: | A control chart based on copula-based Markov time series models |
| 指導教授: |
江村剛志
Takeshi Emura |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 平均串聯長度 、Copula 、相關性資料 、馬可夫鏈 、降低變異數 |
| 外文關鍵詞: | Average run length, Copula, correlated data, Markov chain, variance reduction |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不論在工業方面或是商業方面而言,統計製程管制(Statistical process control)皆是一個非常重要的品質管制工具。傳統的Shewhart管制圖僅是運用在獨立性的假設之下。然而,在現實生活中,存在著許多相關性假設的資料,因此,傳統的管制圖在現實生活中是不被接受且不實用的。在本文,我們主要的目的是以建立在copula之下的馬可夫鏈模型去衍伸我們的相關性假設資料。此外,我們提出了最大概似估計量的方法估計我們的未知參數,分別為管制上限(UCL)以及管制下限(LCL)。接著,我們使用蒙地卡羅模擬法做出平均串聯長度(Average run length)以用來表現管制圖的性質。最後,我們提出了降低變異數的方法去增加資料的準確性。
Statistical process control is an important and convenient tool for business and industry. The traditional Shewhart control chart has been a popular tool for process control, which however is valid under the independence assumption of consecutive observations. In real world applications, there exist many types of dependent observations in which the traditional control charts cannot be used. In this paper, we apply a copula-based Markov chain to model the correlated observations. In particular, we proposed a maximum likelihood method to obtain the estimates of upper control limit (UCL) and lower control limit (LCL). It is shown by simulations that the proposed method provide more accurate estimates of the UCL and LCL than the existing procedure and traditional procedure. We also consider Monte Carlo simulations to compute the value of the average run length (ARL) of the proposed charts. Here, we suggest a variance reduction technique, called antithetic variables method to gain computational efficiency. Two datasets are analyzed for illustration.
Bagshow, M., Johnson, R. A., 1975. The effect of serial correlation on the performance of CUSUM tests II. Technometrics 17, 73-80.
Chen, X., Fan, Y., 2006. Estimation of copula-based semiparametric time series models. Journal of Econometrics 130, 307-335.
Chernoff, H., Lehmann, E. L., 1954. The use of maximum likelihood estimates in chi-square tests for goodness of fit. The Annals of Mathematical Statistics 25, 579-586.
Darsow, W. F., Nguten B., Olsen, E. T., 1992. Copulas and Markov Processes. Illinois Journal of Mathematics 36, 600-642.
Dobric, J. Schmid, F., 2007. A Goodness of Fit Test for Copulas Based on Rosenblatt’s Transformation. Computational Statistics and Data Analysis 51, 4633-4642.
Efron B., 1979. Bootstrap methods: Another look at the jackknife. Ann. Statist 7, 1–26.
Emura, T. Lin C-W, Wang W., 2010. A Goodness-of-fit Test for Archimedean Copula Models in the Presence of Right Censoring. Computational Statistics and Data Analysis 54, 3033-3043.
Emura, T., Konno Y., 2012. A goodness-of-fit tests for parametric models based on dependently truncated data. Computational Statistics and Data Analysis 56, 2237-2250.
Frees, E. W., Valdez, E., 1998. Understanding the relationships using copulas. North American Actuarial Journal 2, 1-25.
Fuh, C. D., Teng, H. W., Wang, R. H., 2013. Efficient importance sampling for rare event simulation with application. Technical Report.
Genest, C., Remillard B., 2008. Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de Institut Henri Poicare -Probabilites et Statistiques 44, 1096-1127.
Genest, C., Remillard, B., Beaudoin, D., 2009. Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics 44, 199-213.
Hryniewicz, O., 2012. On the robustness of the Shewhart control chart to different types of dependencies in data. Frontiers in Statistical Quality Control 10, 19-33.
Hung, Y. C., Tseng, N. F., 2012. Extracting informative variables in the validation of two-group causal relationship. Computational Statistics DOI 10, 1007/s00180-012-0351-z.
Joe, H., 1997. Multivariate Models and Dependence Concepts. CHAPMAN & HALL/CRC.
Johnson, R. A., Bagshaw, M., 1974. The effect of serial correlation on the performance of CUSUM tests. Technometrics 16, 103-112.
Knight, K., 2000. Mathematical Statistics. Chapman & Hall.
Kojadinovic, I., Yan, J., Holmes, M., 2011. Fast large-sample goodness-of-fit tests for copulas. Statistica Sinica 21, 841-871.
Montgomery, D. C., 2009. Statistical Quality Control, Sixth Edition. Wiley.
Nelsen, R. B., 2006. An Introduction to Copulas, 2nd Edition. Springer Series in Statistics, Springer-Verlag. New York.
Ross, S. M., 2006. Simulation, Fourth Edition. Elsevier.
Schmid, W., 2005. On the run length of a Shewhart chart for correlated data. Statistical Papers 36, 111-130.
Shewhart, W.A., 1931. Economic Control of Quality of Manufactured Product. New York: Macmillan.
Shumway, R. B., Stoffer, D. S., 2010. Time Series Analysis and Its Applications: With R Examples. Third Edition, Springer.
Sklar, A., 1959. Fonctions de re'partition a' n dimensions et leurs marges. Publications de l'Intitut de Statistique de l'Universit de Paris 8, 229-231.
Stute, W., 1993. Bootstrap based goodness-of-fit test. Metrika 40, 243-256.