| 研究生: |
呂亭瑩 Ting-Ying Lu |
|---|---|
| 論文名稱: |
檢視地震活動分析與地震危害評估方法:花東縱谷地區的應用 Review the Approaches of Earthquake Activity Analysis and Probabilistic Seismic Hazard Assessment: Application to Longitudinal Valley, Taiwan |
| 指導教授: |
詹忠翰
Chung-Han Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 機率式地震危害評估 、臺灣花東縱谷 、古登堡-芮克特定律 、純特徵地震模型 、斷層系統中的地震危害及地震發生率模型 、傳染型餘震序列模型 |
| 外文關鍵詞: | Probabilistic Seismic Hazard Assessment, Longitudinal Valley, Taiwan, Gutenberg-Richter law, Pure Characteristic Earthquake model, SHERIFS model, Epidemic-Type Aftershock Sequence model |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究驗證了多個具有長期與短期預報能力的地震模型在機率式地震危害評估(Probabilistic Seismic Hazard Assessment, PSHA)中的應用,並評估其對臺灣花東縱谷地區地震危害水平的影響。研究結果顯示,古登堡-芮克特(Gutenberg-Richter, G-R)定律能有效描述該區域小至中規模地震的長期地震率分布,呈現良好的規模-頻率關係擬合效果;而純特徵地震(Pure Characteristic Earthquake)模型則聚焦於單一孕震構造的最大重現週期與規模,對於推估大規模地震的長期發生潛勢更具代表性;進一步引入的斷層系統中的地震危害及地震發生率(Seismic Hazard and Earthquake Rates in Fault Systems, SHERIFS)模型,結合G-R定律與構造幾何參數,並考量不同斷層間可能產生的多重斷層破裂情形,有助於提升中至大規模地震長期發生率的模擬準確性,對區域性複雜斷層系統的危害評估尤為重要。鑒於傳統長期地震模型對於餘震序列及短期地震活動變化的描述有限,本研究亦引入傳染型餘震序列(Epidemic-Type Aftershock Sequence, ETAS)模型進行補充,以分析短期內的地震時空分布變化並將其納入時變型地震危害分析框架。研究結果證實,結合長期與短期模型能有效補足單一模型在不同時間尺度上的限制,提升PSHA在震後應變決策及風險管理上的應用價值。本研究成果除提供臺灣花東縱谷地區地震活動特性之新見解外,亦可作為未來推動多模式整合型PSHA研究與地震災害減輕策略發展之重要參考。
This study validates several seismic models with long- and short-term forecasting capabilities used in probabilistic seismic hazard assessment (PSHA) and evaluates their impact on hazard levels in the Longitudinal Valley, Taiwan, a region characterized by high seismic activity and data quality. The Gutenberg-Richter (G-R) law demonstrates good fitting performance for the long-term rate in small to moderate magnitudes, while the pure characteristic earthquake model, which assesses the maximum recurrence rates for individual seismogenic structures, better fits the long-term rate for large magnitudes. The Seismic Hazard and Earthquake Rates in Fault Systems (SHERIFS) model integrates the G-R law and structural parameters while considering multiple fault ruptures. It performs well in forecasting long-term seismicity rates, particularly for medium to large magnitudes. Recognizing the limitations of the long-term seismic models in short-term and aftershock forecasting, this study further incorporates the Epidemic-Type Aftershock Sequence (ETAS) model to analyze short-term earthquake occurrence rates and assess the temporal evolution of seismic hazard. The ETAS model complements existing approaches by providing more immediate forecasts of seismic activity. The findings from this study provide hazard assessment results across different time scales and underscore the importance of integrating multiple seismic models for precise seismic hazard assessment. This study offers valuable insights into earthquake processes and provides essential parameters for future PSHA studies in Taiwan.
Aki, K. (1984). Asperities, barriers, characteristic earthquakes and strong motion prediction. Journal of Geophysical Research: Solid Earth, 89(B7), 5867-5872.
Angelier, J., Chu, H. T., & Lee, J. C. (1997). Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274(1-3), 117-143.
Angelier, J., Chu, H. T., Lee, J. C., & Hu, J. C. (2000). Active faulting and earthquake hazard: The case study of the Chihshang fault, Taiwan. Journal of Geodynamics, 29(3-5), 151-185.
Bonilla, W. B. (1977). Summary of Quaternary faulting and elevation changes in Taiwan. Memoir of Geological Society of Chaina, 2, 43-55.
Chan, C. H., Wu, Y. M., Tseng, T. L., Lin, T. L., & Chen, C. C. (2012). Spatial and temporal evolution of b-values before large earthquakes in Taiwan. Tectonophysics, 532, 215-222.
Chan, C. H. (2016). Importance of three-dimensional grids and time-dependent factors for applications of earthquake forecasting models to subduction environments. Natural Hazards and Earth System Sciences, 16(9), 2177-2187.
Chan, C. H., Ma, K. F., Lee, Y. T., & Wang, Y. J. (2019). Rethinking seismic source model of probabilistic hazard assessment in Taiwan after the 2018 Hualien, Taiwan, earthquake sequence. Seismological Research Letters, 90(1), 88-96.
Chan, C. H., Ma, K. F., Shyu, J. B. H., Lee, Y. T., Wang, Y. J., Gao, J. C., ... & Rau, R. J. (2020). Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra, 36(1_suppl), 137-159.
Chartier, T., Scotti, O., Lyon-Caen, H., & Boiselet, A. (2017). Methodology for earthquake rupture rate estimates of fault networks: Example for the western Corinth rift, Greece. Natural Hazards and Earth System Sciences, 17(10), 1857-1869.
Chartier, T., Scotti, O., & Lyon‐Caen, H. (2019). SHERIFS: Open‐source code for computing earthquake rates in fault systems and constructing hazard models. Seismological Research Letters, 90(4), 1678-1688.
Chen, C. H., Wang, J. P., Wu, Y. M., Chan, C. H., & Chang, C. H. (2013). A study of earthquake inter-occurrence times distribution models in Taiwan. Natural hazards, 69, 1335-1350.
Chen, K. C., & Wang, J. H. (1985). The b-value distribution and seismicity maps of the Taiwan region. In Proc. ROCJAPAN Seminar on Multiple Hazards Mitigation, Nation Taiwan University, Taipei, Taiwan, ROC (pp. 69-82).
Chen, K. H., Toda, S., & Rau, R. J. (2008). A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien‐Taitung earthquake sequence in eastern Taiwan. Journal of Geophysical Research: Solid Earth, 113(B2).
Chen, W., Yen, I., Yang, C. B., Chen, Y., Tsai, K., Huang, N., & Lin, C. (2005, December). Paleoseismologic studies of the 1951 earthquake rupture, Eastern Taiwan. In AGU Fall Meeting Abstracts (Vol. 2005, pp. T41B-1307).
Chen, W. S., Yen, I. C., Fengler, K. P., Rubin, C. M., Yang, C. C., Yang, H. C., ... & Lin, Y. H. (2007). Late Holocene paleoearthquake activity in the middle part of the Longitudinal Valley fault, eastern Taiwan. Earth and Planetary Science Letters, 264(3-4), 420-437.
Cheng, C. T., Hsieh, P. S., Lin, P. S., Yen, Y. T., Chan, C. H., Beer, M., ... & Au, I. S. K. (2015). Probability seismic hazard mapping of Taiwan. Encyclopedia of Earthquake Engineering, 10, 978-3.
Cheng, J., Xu, C., Ma, J., Xu, X., & Zhu, P. (2023). From active fault segmentation to risks of earthquake hazards and property and life losses—A case study from the Xianshuihe-Xiaojiang fault zone. Science China Earth Sciences, 66(6), 1345-1364.
Cheng, J., Xu, C., Xu, X., Zhang, S., & Zhu, P. (2025). Modeling seismic hazard and landslide occurrence probabilities in northwestern Yunnan, China: exploring complex fault systems with multi-segment rupturing in a block rotational tectonic zone. Natural Hazards and Earth System Sciences, 25(2), 857-877.
Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the seismological society of America, 58(5), 1583-1606.
El Kadri, S., Beauval, C., Brax, M., & Klinger, Y. (2024). Implementation of an interconnected fault system in PSHA, example on the Levant fault. Natural Hazards and Earth System Sciences Discussions, 2024, 1-28.
Ellsworth, W. L., Matthews, M. V., Nadeau, R. M., Nishenko, S. P., Reasenberg, P. A., & Simpson, R. W. (1999). A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities (No. 99-522). US Geological Survey.
Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., ... & Zeng, Y. (2014). Uniform California earthquake rupture forecast, version 3 (UCERF3)—The time‐independent model. Bulletin of the Seismological Society of America, 104(3), 1122-1180.
Frohlich, C., & Davis, S. D. (1993). Teleseismic b values; or, much ado about 1.0. Journal of Geophysical Research: Solid Earth, 98(B1), 631-644.
Fujiwara, H., & Meyers, R. A. (2014). Seismic hazard maps for Japan. Encyclopedia of Complexity and Systems Science, 1-28.
Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?. Bulletin of the seismological society of America, 64(5), 1363-1367.
Giardini, D., Grünthal, G., Shedlock, K. M., & Zhang, P. (1999). The GSHAP global seismic hazard map. Annals of Geophysics, 42(6).
Gómez-Novell, O., García-Mayordomo, J., Ortuño, M., Masana, E., & Chartier, T. (2020). Fault system-based probabilistic seismic hazard assessment of a moderate seismicity region: the eastern Betics shear zone (SE Spain). Frontiers in Earth Science, 8, 579398.
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological society of America, 34(4), 185-188.
Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350.
Helmstetter, A., & Sornette, D. (2003). Predictability in the epidemic‐type aftershock sequence model of interacting triggered seismicity. Journal of Geophysical Research: Solid Earth, 108(B10).
Hsieh, M. C., Chan, C. H., Ma, K. F., Yen, Y. T., Chen, C. T., Chen, D. Y., & Mika Liao, Y. W. (2024). Toward real‐time ground‐shaking‐intensity forecasting using ETAS and GMM: Insights from the analysis of the 2022 Taitung earthquake sequence. Seismological Research Letters, 95(6), 3264-3277.
Hsieh, M. C., Chang, M. H., Tai, Y. C., Chen, C. T., & Lu, T. Y. (2025). Fast report: performance of the ETAS model in forecasting aftershock occurrence and site-specific ground-shaking intensity for the 2025 Dapu, Taiwan, earthquake sequence. Terrestrial, Atmospheric and Oceanic Sciences, 36(1), 1-8.
Hsu, M. T. (1971). Seismicity of Taiwan and some related problems. Bulletin of the International Institute of Seismology and Earthquake Engineering, 8, 41-160.
Hsu, T. L. (1962), Recent faulting in the Longitudinal Valley of eastern Taiwan, Mem. Geol. Soc. China, 1, 95–102.
Hsu, T. L., & Chang, H. C. (1979). Quaternary faulting in Taiwan. Mem. Geol. Soc. China, 3, 155-165.
Iacoletti, S., Cremen, G., & Galasso, C. (2022). Validation of the epidemic‐type aftershock sequence (ETAS) models for simulation‐based seismic hazard assessments. Seismological Society of America, 93(3), 1601-1618.
Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., ... & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1_suppl), 112-136.
Ishimoto, M. and Iida, K. (1939). Observations of Earthquakes Registered with the Micro Seismograph Constructed Recently. Bulletin of the Earthquake Research Institute, 17, 443-478.
Kagan, Y. Y., & Jackson, D. D. (2000). Probabilistic forecasting of earthquakes. Geophysical Journal International, 143(2), 438-453.
Kagan, Y. Y. (2002). Seismic moment distribution revisited: I. Statistical results. Geophysical Journal International, 148(3), 520-541.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., & Kuo, K. W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129, 68-75.
Lee, C. T. (1999). Neotectonics and active faults in Taiwan. In Proceedings of 1999 workshop on disaster prevention/management & green technology, Foster City, CA, USA (pp. 61-74).
Lee, S. J., Liu, T. Y., & Lin, T. C. (2023). The role of the west-dipping collision boundary fault in the Taiwan 2022 Chihshang earthquake sequence. Scientific Reports, 13(1), 3552.
Lin, P. S., & Lee, C. T. (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220-240.
Lin, P. S. (2009). Ground-motion attenuation relationship and path-effect study using Taiwan data set (Doctoral dissertation, Ph. D. Thesis, Institute of Geophysics, National Central University, Chung-Li, Taiwan, 157 pp.(in Chinese)).
Mogi, K. (1963). Some discussions on aftershocks, foreshocks and earthquake swarms-the fracture of a semi finite body caused by an inner stress origin and its relation to the earthquake phenomena. Bull. Earthq. Res. Inst., 41, 615-658.
Molchan, G. M. (1990). Strategies in strong earthquake prediction. Physics of the Earth and Planetary Interiors, 61(1-2), 84-98.
Molchan, G. M. (1991). Structure of optimal strategies in earthquake prediction. Tectonophysics, 193(4), 267-276.
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical association, 83(401), 9-27.
Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50, 379-402.
Ōmori, F. (1894). On the after-shocks of earthquakes (Vol. 7). The University.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., ... & Vigano, D. (2014). OpenQuake engine: An open hazard (and risk) software for the global earthquake model. Seismological Research Letters, 85(3), 692-702.
Pagani, M., Garcia-Pelaez, J., Gee, R., Johnson, K., Poggi, V., Silva, V., ... & Weatherill, G. (2020). The 2018 version of the global earthquake model: hazard component. Earthquake Spectra, 36(1_suppl), 226-251.
Parsons, T., Geist, E. L., Console, R., & Carluccio, R. (2018). Characteristic earthquake magnitude frequency distributions on faults calculated from consensus data in California. Journal of Geophysical Research: Solid Earth, 123(12), 10-761.
Petersen, M. D., Moschetti, M. P., Powers, P. M., Mueller, C. S., Haller, K. M., Frankel, A. D., Zeng, Yuehua, Rezaeian, Sanaz, Harmsen, S. C., Boyd, O. S., Field, Ned, Chen, Rui, Rukstales, K. S., Luco, Nico, Wheeler, R. L., Williams, R. A., and Olsen, A. H., 2014, Documentation for the 2014 update of the United States national seismic hazard maps: U.S. Geological Survey Open-File Report 2014–1091, 243 p., https://dx.doi.org/10.3133/ofr20141091.
Purcaru, G. (1975). A new magnitude-frequency relation for earthquakes and a classification of relation types. Geophysical Journal International, 42(1), 61-79.
Schwartz, D. P., & Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research: Solid Earth, 89(B7), 5681-5698.
Shyu, J. B. H., Sieh, K., Avouac, J. P., Chen, W. S., & Chen, Y. G. (2006a). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Research: Solid Earth, 111(B8).
Shyu, J. B. H., Sieh, K., Chen, Y. G., & Chung, L. H. (2006b). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. GSA Bull 118 (11–12): 1447–1462.
Shyu, J. B. H., Sieh, K., Chen, Y. G., Chuang, R. Y., Wang, Y., & Chung, L. H. (2008). Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan. Tectonics, 27(1).
Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., & Cheng, C. T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(3).
Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., & Liu, S. C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr Atmos Ocean Sci, 31(4), 469-478.
Singh, S. K., Astiz, L., & Havskov, J. (1981). Seismic gaps and recurrence periods of large earthquakes along the Mexican subduction zone: A reexamination. Bulletin of the Seismological Society of America, 71(3), 827-843.
Singh, S. K., Rodriguez, M., & Esteva, L. (1983). Statistics of small earthquakes and frequency of occurrence of large earthquakes along the Mexican subduction zone. Bulletin of the Seismological society of America, 73(6A), 1779-1796.
Thenhaus, P. C., Campbell, K. W., Chen, W. F., & Scawthorn, C. (2003). Seismic hazard analysis. Earthquake engineering handbook, 8, 1-50.
Theunissen, T., Font, Y., Lallemand, S., & Liang, W. T. (2010). The largest instrumentally recorded earthquake in Taiwan: revised location and magnitude, and tectonic significance of the 1920 event. Geophysical Journal International, 183(3), 1119-1133.
Utsu, T. (1965). A method for determining the value of b in a formula log n= a= bM showing the magnitude frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ., 13, 99-103.
Utsu, T. (1970). Aftershocks and earthquake statistics (II)—Further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. J. Fac. Sci. Hokkaido Univ., Ser. VII, 3, 197-266.
Utsu, T., & Ogata, Y. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1), 1-33.
Wang, J. H., 1988: b values of shallow earthquakes in Tai wan. Bull. Seismol. Soc. Am., 78, 1243-1254.
Wang, Y. J., Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R. J., & Cheng, C. T. (2016). Probabilistic seismic hazard assessment for Taiwan. Terr. Atmos. Ocean. Sci, 27(3), 325-340.
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
Wesnousky, S. G., Scholz, C. H., Shimazaki, K., & Matsuda, T. (1983). Earthquake frequency distribution and the mechanics of faulting. Journal of Geophysical Research: Solid Earth, 88(B11), 9331-9340.
Wesnousky, S. G. (1994). The Gutenberg-Richter or characteristic earthquake distribution, which is it?. Bulletin of the Seismological Society of America, 84(6), 1940-1959.
Woessner, J., Laurentiu, D., Giardini, D. et al. The 2013 European Seismic Hazard Model: key components and results. Bull Earthquake Eng 13, 3553–3596 (2015). https://doi.org/10.1007/s10518-015-9795-1
Woo, G. (1996). Kernel estimation methods for seismic hazard area source modeling. Bulletin of the Seismological Society of America, 86(2), 353-362.
Youngs, R. R., & Coppersmith, K. J. (1985). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bulletin of the Seismological society of America, 75(4), 939-964.
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
Yu, S. B., & Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217.
Zhuang, J., Ogata, Y., & Vere-Jones, D. (2002). Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical Association, 97(458), 369-380.
Zhuang, J., Chang, C. P., Ogata, Y., & Chen, Y. I. (2005). A study on the background and clustering seismicity in the Taiwan region by using point process models. Journal of Geophysical Research: Solid Earth, 110(B5).
Zhuang, J., & Ogata, Y. (2006). Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 73(4), 046134.
中央地質調查所(2010)。「臺灣活動斷層分布圖」,經濟部中央地質調查所。
中央地質調查所(2018)。「20180206 花蓮地震地質調查報告」,經濟部中央地質調查所,共131頁。
中央地質調查所(2022)。「20220917關山地震、0918池上地震地質調查報告」,經濟部中央地質調查所,共97頁。
陳文山(2006)。「槽溝開挖與古地震研究計畫(總報告)」,經濟部中央地質調查所報告第95-08號。
陳文山(2010)。「地震地質與地變動潛勢分析計畫-斷層長期滑移速率與再現週期研究(總報告)」,經濟部中央地質調查所報告第99-09號。
曾雅筑(2019)。「臺灣東部花蓮地區米崙活動斷層之古地震研究」,國立中央大學應用地質研究所,碩士論文。